stress agent
Recently Published Documents


TOTAL DOCUMENTS

60
(FIVE YEARS 17)

H-INDEX

16
(FIVE YEARS 1)

Author(s):  
Fakhreddin Yaghoob Nezhad ◽  
Annett Riermeier ◽  
Martin Schönfelder ◽  
Lore Becker ◽  
Martin Hrabĕ de Angelis ◽  
...  

AbstractThe Hippo signal transduction network regulates transcription through Yap/Taz-Tead1-4 in many tissues including skeletal muscle. Whilst transgenic mice have been generated for many Hippo genes, the resultant skeletal muscle phenotypes were not always characterized. Here, we aimed to phenotype the hindlimb muscles of Hippo gene-mutated Lats1−/−, Mst2−/−, Vgll3−/−, and Vgll4+/− mice. This analysis revealed that Lats1−/− mice have 11% more slow type I fibers than age and sex-matched wild-type controls. Moreover, the mRNA expression of slow Myh7 increased by 50%, and the concentration of type I myosin heavy chain is 80% higher in Lats1−/− mice than in age and sex-matched wild-type controls. Second, to find out whether exercise-related stimuli affect Lats1, we stimulated C2C12 myotubes with the hypertrophy agent clenbuterol or the energy stress agent AICAR. We found that both stimulated Lats1 expression by 1.2 and 1.3 fold respectively. Third, we re-analyzed published datasets and found that Lats1 mRNA in muscle is 63% higher in muscular dystrophy, increases by 17–77% after cardiotoxin-induced muscle injury, by 41–71% in muscles during overload-induced hypertrophy, and by 19–21% after endurance exercise when compared to respective controls. To conclude, Lats1 contributes to the regulation of muscle fiber type proportions, and its expression is regulated by physiological and pathological situations in skeletal muscle.


Author(s):  
M. O. Cherniak

Purpose. To study agronomic measures for the care of winter wheat: the use of foliar fertilization and protection against weeds with sulfonylureas. Methods. Field and laboratory. Results. It was investigated that the application of Bioforge anti-stress fertilizer did not significantly affect the growth of photosynthetic potential of crops, as the leaf surface area was not significantly different. In addition to the area of the photosynthetic leaf surface, there is a more accurate indicator, that is net productivity of photosynthesis, which can, in our opinion, more accurately show whether the effects of plant protection products against weeds lead to changes in physiological processes in the plant. the mechanism of action of the anti-stress agent is somewhat different. After all, the organization of the photosynthetic apparatus of plants can be such that for a relatively small area of leaves you can get better rates of dry matter accumulation. The best indicators of photosynthetic potential for the use of plant protection products in autumn were identified with the use of such products as Granstar Pro 75, WG, Logran 75, WG, Harmony 75, WG, for introduction into the phenophase BBCH 10–13, and in spring for use in BBCH 27–29 in combination with Bioforge and separately. However, the introduction of PIC 75, WG, to form the best photosynthetic potential of winter wheat crops should be carried out in the phase of BBCH 7–9 in autumn or spring in BBCH 25–26. We also investigated that the use of Bioforge anti-stress fertilizer did not significantly affect the growth of photosynthetic potential of crops. Conclusions. It was determined that the use of the anti-stress agent Bioforge had a positive effect on the condition of plants and their accumulation of dry matter. Accordingly, the best indicators of net productivity of wheat photosynthesis were obtained with the use in autumn of such products as Granstar Pro 75, WG, Logran 75, WG, Harmony 75, WG, for introduction into the phenophase BBCH 10–13, and spring for use in BBCH 27–29 in combination with Bioforge. However, the introduction of PIC 75, WG, to form the best photosynthetic potential of winter wheat crops should be carried out in the phase of BBCH 7–9 in autumn or spring in BBCH 25–26 in combination with Bioforge.


2021 ◽  
Vol 28 (2) ◽  
pp. 107-123
Author(s):  
Guido Dutra De Oliveira ◽  
Pedro Phelipe Gonçalves Porto ◽  
Conceição De Maria Albuquerque Alves ◽  
Celia Ghedini Ralha

Agriculture is one of the main economic activities in Brazil. The intensive use of water for irrigated agriculture leads to water rise demand contributing to increase water stress. Agent-based models help assess this problem with promising applications entailing an organizing principle to inform us of how to view a real-world system and effectively build a model. In this work, agent-based modeling is applied to simulate water usage for irrigation in agricultural production in the Samambaia river basin in the municipality of Cristalina in the Goias state of Brazil. The use of real data enables analysis of resource availability in a scenario with high demand irrigation, allowing a greater understanding of the needs of the parties involved.


Beverages ◽  
2021 ◽  
Vol 7 (3) ◽  
pp. 60
Author(s):  
Marcellus Arnold ◽  
Yolanda Victoria Rajagukguk ◽  
Anna Gramza-Michałowska

Dadih or dadiah is traditional fermented buffalo milk of Minangkabau, which occurs spontaneously. Dadih is commonly served as ampiang dadih, or other dishes. The microbiota found in dadih are dominated by lactic acid bacteria, and yeasts are also found. The lactic acid bacteria provide functional value, such as antimicrobial, hypocholesterolemic, antimutagenic, antioxidant, and immunomodulatory properties, as well as being the source of γ-aminobutyric acid (GABA) as an anti-stress agent and folate. Nevertheless, many challenges were observed in dadih production, including the limitation of buffalo milk production due to decreasing populations of buffalo in the last two decades, unstandardized dadih production due to the spontaneous fermentation in natural bamboo tubes, and safety problems as no heat treatment is applied in the production of dadih. These problems impede the development of dadih production, thus is it important to improve buffalo cultivation through artificial insemination programs, using different types of milk and pasteurization processes in dadih production, and incubator development to accelerate the fermentation period.


2021 ◽  
Vol 66 (3) ◽  
pp. 48-54
Author(s):  
I. Bukhovets ◽  
O. Vasiltseva ◽  
Yu. Lishmanov ◽  
I. Vorozhtsova ◽  
A. Lavrov ◽  
...  

Purpose: To develop a functional stress-test with Dalargin used as a pharmacological stress agent and to study its diagnostic capabilities for quantifying the general and segmental systolic function of the left ventricle in patients with IHD using SPECT and echo methods. Material and methods: The study comprised 29 male patients with CHD-angina of 2-3 functional classes, studied on 15–25 days (on average 20 ± 2.8 days) after a large-focal myocardial infarction. A fractional step-wise injection of Dalargin was performed with step doses as 0.1 mg / kg (1 ml up to a total of 8 ml, with intervals of 90 seconds, for a total of 12 minutes), in a supine position. After each dose of Dalargin, blood pressure, heart rate, ECG were recorded, and an echocardiographic assessment of hemodynamic parameters and local contractility was carried out. At the peak of the effect of dalargin, 99mTc-Tetrofosmin was administered intravenously (370 – 540 MBq), followed by chest SPECT. Results: The optimal dose of dalargin for assessing the contractility of the LV was 0.3 mg/kg. From the data of myocardial perfusion SPECT, at dalargin test, the number of segments with normal regional blood supply increased statistically significantly from 56,0 % to 64,7 %, the number of hypoperfused segments decreased from 41.0% to 33.7% as compared to rest, and the number of non-perfused ones – from 3.0 % to 1.6 %. Spearman’s correlation coefficient between segmental contractility and local perfusion at the top dalargin inotropic effect was high and significant (R=0.67, p<0.01). The sensitivity and specificity of the pharmacological test with intravenous administration of dalargin for prediction of postoperative improvement of perfusion and contractility of the viable myocardium were: sensitivity 78.8 %, specificity 76.4 %, diagnostic accuracy 77.6 %. Conclusion. The use of the agonist of the μ - and δ-opioid receptors dalargin as a pharmacological stress-agent at perfusion SPECT and Stress Echocardiography to assess the contractile reserve of a dysfunctional viable myocardium is informative and appropriate. In patients with IHD who have suffered a myocardial infarction and are referred to myocardial revascularization, dalargin can be employed as an effective stress-agent for assessing the reserve of perfusion and contractility of dysfunctional left ventricular myocardium using perfusion SPECT and echocardiography.


Rice ◽  
2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Kieu Thi Xuan Vo ◽  
Md Mizanor Rahman ◽  
Md Mustafizur Rahman ◽  
Kieu Thi Thuy Trinh ◽  
Sun Tae Kim ◽  
...  

AbstractBiotic stresses represent a serious threat to rice production to meet global food demand and thus pose a major challenge for scientists, who need to understand the intricate defense mechanisms. Proteomics and metabolomics studies have found global changes in proteins and metabolites during defense responses of rice exposed to biotic stressors, and also reported the production of specific secondary metabolites (SMs) in some cultivars that may vary depending on the type of biotic stress and the time at which the stress is imposed. The most common changes were seen in photosynthesis which is modified differently by rice plants to conserve energy, disrupt food supply for biotic stress agent, and initiate defense mechanisms or by biotic stressors to facilitate invasion and acquire nutrients, depending on their feeding style. Studies also provide evidence for the correlation between reactive oxygen species (ROS) and photorespiration and photosynthesis which can broaden our understanding on the balance of ROS production and scavenging in rice-pathogen interaction. Variation in the generation of phytohormones is also a key response exploited by rice and pathogens for their own benefit. Proteomics and metabolomics studies in resistant and susceptible rice cultivars upon pathogen attack have helped to identify the proteins and metabolites related to specific defense mechanisms, where choosing of an appropriate method to identify characterized or novel proteins and metabolites is essential, considering the outcomes of host-pathogen interactions. Despites the limitation in identifying the whole repertoire of responsive metabolites, some studies have shed light on functions of resistant-specific SMs. Lastly, we illustrate the potent metabolites responsible for resistance to different biotic stressors to provide valuable targets for further investigation and application.


Gels ◽  
2021 ◽  
Vol 7 (1) ◽  
pp. 15
Author(s):  
Nicola Zerbinati ◽  
Sabrina Sommatis ◽  
Cristina Maccario ◽  
Maria Chiara Capillo ◽  
Serena Di Francesco ◽  
...  

The multicomponent preparations for mesotherapy are based on the principle that skin and hair aging can be prevented by supplying the fundamental substrates for correct cellular functioning, such as nucleotides, vitamins, amino acids, and biomolecules including hyaluronic acid (HA) that promote skin hydration and several biological activities. The study provides evidence for the application of HYDRO DELUXE BIO (Matex Lab S.p.A), a biocompatible hydrogel containing not cross-linked HA, for the treatment of the scalp’s skin by mesotherapy. Using an in vitro model of immortalized human keratinocytes, we studied markers involved in hair aging prevention and growth, such as inflammatory markers, angiogenesis, and oxidative damage. HYDRO DELUXE BIO showed high biocompatibility and the ability to significantly reduce the expression of the inflammation marker interleukin (IL)-8 in Tumor Necrosis Factor (TNF)-stimulated cells. Then, we evaluated angiogenesis, a pivotal event during hair growth, measuring the Vascular Endothelial Growth Factor (VEGF) expression that resulted to be significantly increased in treated cells, suggesting a pro-angiogenetic capability. A protective activity against the oxidative stress agent was showed, increasing the survival rate in treated cells. Concluding, HYDRO DELUXE BIO is suitable for treatment by mesotherapy of the scalp’s skin as it modulates the expression levels of markers involved in the biorevitalization of the hair follicle.


2021 ◽  
Vol 15 (1) ◽  
pp. e0008895
Author(s):  
Marcin P. Joachimiak

A wide variety of symptoms is associated with Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection, and these symptoms can overlap with other conditions and diseases. Knowing the distribution of symptoms across diseases and individuals can support clinical actions on timelines shorter than those for drug and vaccine development. Here, we focus on zinc deficiency symptoms, symptom overlap with other conditions, as well as zinc effects on immune health and mechanistic zinc deficiency risk groups. There are well-studied beneficial effects of zinc on the immune system including a decreased susceptibility to and improved clinical outcomes for infectious pathogens including multiple viruses. Zinc is also an anti-inflammatory and anti-oxidative stress agent, relevant to some severe Coronavirus Disease 2019 (COVID-19) symptoms. Unfortunately, zinc deficiency is common worldwide and not exclusive to the developing world. Lifestyle choices and preexisting conditions alone can result in zinc deficiency, and we compile zinc risk groups based on a review of the literature. It is also important to distinguish chronic zinc deficiency from deficiency acquired upon viral infection and immune response and their different supplementation strategies. Zinc is being considered as prophylactic or adjunct therapy for COVID-19, with 12 clinical trials underway, highlighting the relevance of this trace element for global pandemics. Using the example of zinc, we show that there is a critical need for a deeper understanding of essential trace elements in human health, and the resulting deficiency symptoms and their overlap with other conditions. This knowledge will directly support human immune health for decreasing susceptibility, shortening illness duration, and preventing progression to severe cases in the current and future pandemics.


2020 ◽  
Vol 13 (1) ◽  
Author(s):  
Rasool Kamal ◽  
Yuxue Liu ◽  
Qiang Li ◽  
Qitian Huang ◽  
Qian Wang ◽  
...  

Abstract Background Crude glycerol as a promising feedstock for microbial lipid production contains several impurities that make it toxic stress inducer at high amount. Under stress conditions, microorganisms can accumulate l-proline as a safeguard. Herein, l-proline was assessed as an anti-stress agent in crude glycerol media. Results Crude glycerol was converted to microbial lipids by the oleaginous yeast Rhodosporidium toruloides CGMCC 2.1389 in a two-staged culture mode. The media was supplied with exogenous l-proline to improve lipid production efficiency in high crude glycerol stress. An optimal amount of 0.5 g/L l-proline increased lipid titer and lipid yield by 34% and 28%, respectively. The lipid titer of 12.2 g/L and lipid content of 64.5% with a highest lipid yield of 0.26 g/g were achieved with l-proline addition, which were far higher than those of the control, i.e., lipid titer of 9.1 g/L, lipid content of 58% and lipid yield of 0.21 g/g. Similarly, l-proline also improved cell growth and glycerol consumption. Moreover, fatty acid compositional profiles of the lipid products was found suitable as a potential feedstock for biodiesel production. Conclusion Our study suggested that exogenous l-proline improved cell growth and lipid production on crude glycerol by R. toruloides. The fact that higher lipid yield as well as glycerol consumption indicated that l-proline might act as a potential anti-stress agent for the oleaginous yeast strain.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Abayomi Ololade Adelaja ◽  
Oluwafemi Gabriel Oluwole ◽  
Oritoke Modupe. Aluko ◽  
Solomon Umukoro

AbstractObjectivesRepeated exposure to anoxic stress damages the brain through cortisol-mediated increases in oxidative stress and cellular-antioxidants depletion. Thus, compounds with antioxidant property might confer protection against anoxic stress-induced brain injuries. In this study, we further examined the protective effect of methyl jasmonate (MJ), a potent anti-stress agent against anoxic stress-induced convulsions in mice.MethodsThirty-six male Swiss mice randomized into six groups (n=6) were given MJ (25, 50 and 100 mg/kg, i.p.) or vehicle (10 mL/kg, i.p.) 30 min before 15 min daily exposure to anoxic stress for 7 days. The latency(s) to anoxic convulsion was recorded on day 7. The blood glucose and serum corticosterone levels were measured afterwards. The brains were also processed for the determination of malondialdehyde, nitrite, and glutathione levels.ResultsMethyl jasmonate (MJ) delayed the latency to anoxic convulsion and reduced the blood glucose and serum corticosterone levels. The increased malondialdehyde and nitrite contents accompanied by decreased glutathione concentrations in mice with anoxic stress were significantly attenuated by MJ.ConclusionsThese findings further showed that MJ possesses anti-stress property via mechanisms relating to the reduction of serum contents of corticosterone and normalization of brain biomarker levels of oxidative stress in mice with anoxic stress.


Sign in / Sign up

Export Citation Format

Share Document