Trapping waves by a submerged cylinder

2012 ◽  
Vol 43 (3) ◽  
pp. 197-210
Author(s):  
Ana Magnolia Marín ◽  
Ruben Dario Ortíz ◽  
Joel Arturo ◽  
Rodriguez-Ceballos
Keyword(s):  
2021 ◽  
Vol 33 (1) ◽  
pp. 111-119
Author(s):  
M. I. Alamayreh ◽  
A. Fenocchi ◽  
G. Petaccia ◽  
S. Sibilla ◽  
E. Persi

Author(s):  
Erkan Cakir ◽  
Ayhan Akinturk ◽  
Alejandro Allievi

The aim of the study is to investigate VIV effects, not only on a test cylinder but also on the experimental rig being towed under water at a prescribed depth and operating speeds. For this purpose, a numerical Multi-Physics model was created using one way coupled analysis simultaneously between the Mechanical and Fluent solvers of ANSYS software package. A system coupling was developed in order to communicate force data alternately between the solvers with the help of automatic mapping algorithms within millesimal time periods of a second. Numerical investigation into the dynamic characteristics of pressure and velocity fields for turbulent viscous fluid flow along with structural responses of the system, stressed the significance of time and space scales for convergence and accuracy of our Finite Volume (FV) CFD calculations.


Author(s):  
Ivan van Winsen ◽  
Job S. Bokhorst ◽  
René H. M. Huijsmans

Diffraction calculations overpredict motion RAO’s and force RAO’s in cases where a small layer of water is present on top of a submerged body. This was observed after conducting model tests on a free floating SSCV Thialf and a captive submerged cylinder. A parameter study is done to get a better understanding of why diffraction calculations overpredict the forces in heave direction. From this study it was observed that unrealistically high water elevations existed on top of the cylinder causing the heave forces to be overestimated. A damping lid is therefore implemented to decrease this water elevation. On top of that, a new method is developed to be able to capture the dependency of the force RAO on the wave height. This method uses the instantaneous submergence height (the height of water on top of the submerged body) to determine the time averaged force RAO for a given wave height and wave frequency.


2018 ◽  
Vol 37 (7) ◽  
pp. 85-104
Author(s):  
Zhe Hu ◽  
Xiaoying Zhang ◽  
Yan Li ◽  
Xiaowen Li

2014 ◽  
Vol 140 (1) ◽  
pp. 225-232 ◽  
Author(s):  
Sheng-chao Jiang ◽  
Ying Gou ◽  
Bin Teng ◽  
De-zhi Ning

Author(s):  
Shengnan Liu ◽  
Muk Chen Ong ◽  
Charlotte Obhrai ◽  
Sopheak Seng

Two-dimensional (2D) numerical simulations have been performed using OpenFOAM (an open source CFD software package [1]) and waves2Foam (an OpenFOAM based add-on library for wave generations and absorption [2]) to investigate free surface waves past one fixed horizontally semi-submerged cylinder. The 2-D simulations are carried out by solving Navier-Stokes equations which are discretized based on finite volume method (FVM). Volume of Fluid (VOF) method is employed to capture the free surface in the numerical wave tank. Validation studies have been performed by comparing the numerical results of Stokes first-order wave past a semi-submerged circular cylinder with the published experimental data at different incident wave properties. The numerical results are in good agreement with the experimental data. Subsequently, regular and irregular waves past semi-submerged cylinder at different wave heights and the wave lengths are computed numerically to investigate the effect of the wave height and wave length on wave-structure interaction. The numerical results for irregular waves are compared with those induced by regular waves.


Sign in / Sign up

Export Citation Format

Share Document