Modeling flows in low-pressure turbine cascades at very low Reynolds numbers

2014 ◽  
Vol 6 (2) ◽  
pp. 257-270
Author(s):  
Vincent Marciniak
Author(s):  
Stephen A. Pym ◽  
Asad Asghar ◽  
William D. E. Allan ◽  
John P. Clark

Abstract Aircraft are operating at increasingly high-altitudes, where decreased air density and engine power settings have led to increasingly low Reynolds numbers in the low-pressure turbine portion of modern-day aeroengines. These operating conditions, in parallel with highly-loaded blade profiles, result in non-reattaching laminar boundary layer separation along the blade suction surface, increasing loss and decreasing engine performance. This work presents an experimental investigation into the potential for integrated leading-edge tubercles to improve blade performance in this operating regime. A turn-table cascade test-section was constructed and commissioned to test a purpose-designed, forward-loaded, low-pressure turbine blade profile at various incidences and Reynolds numbers. Baseline and tubercled blades were tested at axial chord Reynolds numbers at and between 15 000 and 60 000, and angles of incidence ranging from −5° to +10°. Experimental data collection included blade surface pressure measurements, total pressure loss in the blade wakes, hot-wire anemometry, surface hot-film measurements, and surface flow visualization using tufts. Test results showed that the implementation of tubercles did not lead to a performance enhancement. However, useful conclusions were drawn regarding the ability of tubercles to generate stream-wise vortices at ultra-low Reynolds numbers. Additional observations helped to characterize the suction surface boundary layer over the highly-loaded, low-pressure turbine blade profile when at off-design conditions. Recommendations were made for future work.


1999 ◽  
Vol 122 (2) ◽  
pp. 431-433 ◽  
Author(s):  
C. G. Murawski ◽  
K. Vafai

An experimental study was conducted in a two-dimensional linear cascade, focusing on the suction surface of a low pressure turbine blade. Flow Reynolds numbers, based on exit velocity and suction length, have been varied from 50,000 to 300,000. The freestream turbulence intensity was varied from 1.1 to 8.1 percent. Separation was observed at all test Reynolds numbers. Increasing the flow Reynolds number, without changing freestream turbulence, resulted in a rearward movement of the onset of separation and shrinkage of the separation zone. Increasing the freestream turbulence intensity, without changing Reynolds number, resulted in shrinkage of the separation region on the suction surface. The influences on the blade’s wake from altering freestream turbulence and Reynolds number are also documented. It is shown that width of the wake and velocity defect rise with a decrease in either turbulence level or chord Reynolds number. [S0098-2202(00)00202-9]


Author(s):  
Kenneth Van Treuren ◽  
Tyler Pharris ◽  
Olivia Hirst

The low-pressure turbine has become more important in the last few decades because of the increased emphasis on higher overall pressure and bypass ratios. The desire is to increase blade loading to reduce blade counts and stages in the low-pressure turbine of a gas turbine engine. Increased turbine inlet temperatures for newer cycles results in higher temperatures in the low-pressure turbine, especially the latter stages, where cooling technologies are not used. These higher temperatures lead to higher work from the turbine and this, combined with the high loadings, can lead to flow separation. Separation is more likely in engines operating at high altitudes and reduced throttle setting. At the high Reynolds numbers found at takeoff, the flow over a low-pressure turbine blade tends to stay attached. At lower blade Reynolds numbers (25,000 to 200,000), found during cruise at high altitudes, the flow on the suction surface of the low-pressure turbine blades is inclined to separate. This paper is a study on the flow characteristics of the L1A turbine blade at three low Reynolds numbers (60,000, 108,000, and 165,000) and 15 turbulence intensities (1.89% to 19.87%) in a steady flow cascade wind tunnel. With this data, it is possible to examine the impact of Reynolds number and turbulence intensity on the location of the initiation of flow separation, the flow separation zone, and the reattachment location. Quantifying the change in separated flow as a result of varying Reynolds numbers and turbulence intensities will help to characterize the low momentum flow environments in which the low-pressure turbine must operate and how this might impact the operation of the engine. Based on the data presented, it is possible to predict the location and size of the separation as a function of both the Reynolds number and upstream freestream turbulence intensity (FSTI). Being able to predict this flow behavior can lead to more effective blade designs using either passive or active flow control to reduce or eliminate flow separation.


Author(s):  
Christoph Lyko ◽  
Dirk Michaelis ◽  
Dieter Peitsch ◽  
Mirko Dittmar

Low pressure turbines of small and medium sized engines may operate at very low Reynolds numbers. In consequence transition is delayed to an extend where laminar separation, detached transition and reattachment occur. The wakes from upstream blade rows lead to overall high turbulence levels which play a key role in the transition process. Freestream eddies buffeting the laminar boundary layer induce streamwise vortices known as Klebanoff Modes. To investigate this type of flow a flat plate was exposed to a pressure distribution. It is based on the PAK-B suction side and was created by a contoured wall facing the plate. The PAK-B is a Pratt & Whitney design and a Mach number scaled version of a highly aft loaded low pressure turbine airfoil. Due to the latter it suffers from a large separation bubble at low Reynolds numbers. The flow has been intensively investigated by hot-wire anemometry with a very high spatial resolution. This allows obtaining very precise information about the location of characteristic flow areas; for instance the separation and reattachment positions. Based on this information, Tomographic PIV was employed to expose detailed features in specific areas of the flow field. This technique provides the velocity vector information inside a flow volume. It complements hot-wire results, which give a time resolved information but only planar velocity magnitudes. Combining these techniques and comparing their results is therefore an excellent way to raise the physical understanding of the flow behaviour. This has been done using velocity profiles, skin friction coefficients and integral boundary layer parameters. As the 3D-PIV information allows calculation of derived quantities, like the vector field rotation, a picture of the coherent structures can be drawn.


Author(s):  
Tyler M. Pharris ◽  
Olivia E. Hirst ◽  
Kenneth W. Van Treuren

Current gas turbine engines experience a loss in performance due to the low Reynolds number flow in the low-pressure turbine. This low flow speed can result in separation of the air from the blade surface, reducing the efficiency of the engine. The Baylor University Cascade wind tunnel (BUC) is being used to study this flow separation. A cascade wind tunnel contains a row of turbine vanes that simulates a turbine wheel. The BUC is capable of simulating the environment seen by the low-pressure turbine at high altitudes by producing Reynolds numbers varying from 25,000 to 400,000. The L1A blade profile is currently being tested. Coefficient of pressure (Cp) plots show a less than 1% difference between surface pressure locations when comparing the most inboard and outboard test blades. This agreement demonstrates the flow uniformity in the tunnel. Cp plots also compared favorably to the literature, validating the BUC operation and providing insight into how Reynolds numbers and free stream turbulence intensity (FSTI) affect flow separation. The literature and this study showed the size and reattachment of the separation bubble was highly dependent on the FSTI for lower Reynolds numbers (25,000 to 200,000). This comparison also showed that the size of the separation bubble and the location was not heavily impacted by FSTI for Reynolds numbers above 200,000. Tests in the future will be conducted to determine the actual FSTI of the BUC. Once completely validated, future studies with the BUC may include use of particle image velocimetry (PIV) to visualize the flow, a gold foil steady state technique using liquid crystals to measure heat transfer, and a series of deposition tests using surface roughness (sandpaper or textured sprays) to measure performance loss under these conditions. The ultimate goal of this research is to improve blade design in the low pressure turbine for all commercial and military aircraft.


Sign in / Sign up

Export Citation Format

Share Document