Reassessing the mechanism of genome packaging in plant viruses with lessons from ATPase fold

Author(s):  
Tushar Ranjan ◽  
Awadhesh Kumar Pal ◽  
Bishun Deo Prasad ◽  
Ravi Ranjan Kumar ◽  
Mahesh Kumar ◽  
...  
2021 ◽  
Author(s):  
Jitesh Kumar ◽  
Ravi Ranjan Kumar ◽  
Dilip Kumar Das ◽  
Auroshikha Mohanty ◽  
Kumari Rajani ◽  
...  

Potato leaf roll virus (PLRV) uses powerful molecular machines to package its genome into a viral capsid employing ATP as fuel. Although, recent bioinformatics and structural studies have revealed detailed mechanism of DNA packaging, little is known about the mechanochemistry of genome packaging in small plant viruses such as PLRV. We have identified a novel P-loop-containing ATPase domain with two Walker A-like motifs, two arginine fingers, and two sensor motifs distributed throughout the polypeptide chain of PLRV capsid protein (CP). The composition and arrangement of the ATP binding and hydrolysis domain of PLRV CP is unique and rarely reported. The discovery of the system sheds new light on the mechanism of viral genome packaging, regulation of viral assembly process, and evolution of plant viruses. Here, we used the RNAi approach to suppress CP gene expression, which in turn prevented PLRV genome packaging and assembly in Solanum tuberosum cv. Khufri Ashoka. Potato plants agroinfiltrated with siRNA constructs against the ATPase domain of CP exhibited no rolling symptoms upon PLRV infection, indicating that the silencing of CP gene expression is an efficient method for generating PLRV-resistant potato plants. Moreover, our findings provide a robust approach to generate PLRV-resistant potato plants, which can be further extended to other species. Finally, we propose a new mechanism of genome packaging and assembly in plant viruses.


Author(s):  
N.C. Lyon ◽  
W. C. Mueller

Schumacher and Halbsguth first demonstrated ectodesmata as pores or channels in the epidermal cell walls in haustoria of Cuscuta odorata L. by light microscopy in tissues fixed in a sublimate fixative (30% ethyl alcohol, 30 ml:glacial acetic acid, 10 ml: 65% nitric acid, 1 ml: 40% formaldehyde, 5 ml: oxalic acid, 2 g: mecuric chloride to saturation 2-3 g). Other workers have published electron micrographs of structures transversing the outer epidermal cell in thin sections of plant leaves that have been interpreted as ectodesmata. Such structures are evident following treatment with Hg++ or Ag+ salts and are only rarely observed by electron microscopy. If ectodesmata exist without such treatment, and are not artefacts, they would afford natural pathways of entry for applied foliar solutions and plant viruses.


Author(s):  
K. Pegg-Feige ◽  
F. W. Doane

Immunoelectron microscopy (IEM) applied to rapid virus diagnosis offers a more sensitive detection method than direct electron microscopy (DEM), and can also be used to serotype viruses. One of several IEM techniques is that introduced by Derrick in 1972, in which antiviral antibody is attached to the support film of an EM specimen grid. Originally developed for plant viruses, it has recently been applied to several animal viruses, especially rotaviruses. We have investigated the use of this solid phase IEM technique (SPIEM) in detecting and identifying enteroviruses (in the form of crude cell culture isolates), and have compared it with a modified “SPIEM-SPA” method in which grids are coated with protein A from Staphylococcus aureus prior to exposure to antiserum.


Author(s):  
M. F. Miller ◽  
A. R. Rubenstein

Studies of rotavirus particles in humans, monkeys and various non-primates with acute gastroenteritis have involved detection of virus in fecal material by electron microscopy. The EM techniques most commonly employed have been the conventional negative staining (Fig. 1) and immune aggregation (Fig. 2) procedures. Both methods are somewhat insensitive and can most reliably be applied to samples containing large quantities of virus either naturaLly or as a result of concentration by ultracentrifugation. The formation of immune complexes by specific antibody in the immune aggregation procedures confirms the rotavirus diagnosis, but the number of particles per given microscope field is effectively reduced by the aggregation process. In the present communication, we describe use of an on-grid immunoelectron microscopic technique in which rotavirus particles are mounted onto microscope grids that were pre-coated with specific antibody. The technique is a modification of a method originalLy introduced by Derrick (1) for studies of plant viruses.


1944 ◽  
Vol 78 (779) ◽  
pp. 557-559
Author(s):  
J. Arthur Herrick
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document