scholarly journals First report of Turnip vein clearing virus and Ribgrass mosaic virus from New Zealand

2012 ◽  
Vol 7 (1) ◽  
pp. 67-69 ◽  
Author(s):  
Daniel Cohen ◽  
Ramesh R. Chavan ◽  
Arnaud G. Blouin ◽  
Michael N. Pearson
Plant Disease ◽  
2017 ◽  
Vol 101 (5) ◽  
pp. 849-849 ◽  
Author(s):  
J. Tang ◽  
S. Khan ◽  
B. Quinn ◽  
S. Veerakone ◽  
E. Milleza ◽  
...  

Plant Disease ◽  
2013 ◽  
Vol 97 (10) ◽  
pp. 1376-1376 ◽  
Author(s):  
E. Aguilar ◽  
V. G. Sengoda ◽  
B. Bextine ◽  
K. F. McCue ◽  
J. E. Munyaneza

In April of 2012, tobacco (Nicotiana tabacum L.) plants with symptoms resembling those associated with viral infection were observed in commercial fields in the Department of El-Paraíso, Honduras. Symptoms on affected plants included apical leaf curling and stunting, overall chlorosis and plant stunting, young plant deformation with cabbage-like leaves, wilting, and internal vascular necrosis of stems and leaf petioles. All cultivars grown were affected, with disease incidence ranging from 5 to 80% of symptomatic plants per field. The fields were also heavily infested with the psyllid Bactericera cockerelli. This psyllid is a serious pest of solanaceous crops in the United States, Mexico, Central America, and New Zealand and has been shown to transmit the bacterium “Candidatus Liberibacter solanacearum” to potato, tomato, and other solanaceous species (2,3). Tobacco (cv. Habano criollo) plant samples were collected from one field in the municipality of Trojes. Initial testing of the plant samples for viruses, including Tobacco mosaic virus, Impatiens necrotic spot virus, Cucumber mosaic virus, and Potato virus Y, using Immunostrips (Agdia, Elkhart, IN) were negative. Total DNA was then extracted from leaf tissues of a total of 13 plants, including eight symptomatic plants and five asymptomatic plants with the cetyltrimethylammonium bromide (CTAB) buffer extraction method (2,4). The DNA samples were tested by PCR using specific PCR primer pairs OA2/OI2c and OMB 1482f/2086r, to amplify a portion of 16S rDNA and the outer membrane protein (OMB) gene of “Ca. L. solanacearum,” respectively (2). All eight (100%) symptomatic plant samples were positive for “Ca. L. solanacearum” with both sets of primer pairs. “Ca. L. solanacearum” was not detected in the asymptomatic plants. The 16S rDNA and OMB gene amplicons of two plant samples each were cloned and four clones of each of the four amplicons were sequenced. BLASTn analysis of the consensus sequences confirmed “Ca. L. solanaeacrum” in the tobacco samples. The 16S rDNA consensus sequences (1,168 bp) of all amplicons were identical and showed 100% identity with several 16S rDNA sequences of “Ca. L. solanacearum” in GenBank (e.g., Accession Nos. HM245242, JF811596, and JX559779). The consensus sequence of the OMB amplicon (605 bp) showed 97 to 100% homology with a number of “Ca. L. solanacearum” OMB sequences in GenBank, including Accession Nos. CP002371, FJ914617, JN848754 and JN848752. The tobacco-associated consensus 16S rDNA and OMB sequences from this study were deposited in GenBank as Accession Nos. KC768320 and KC768328, respectively. To our knowledge, this is the first report of “Ca. L. solanacearum” associated with tobacco in Honduras, where this cash crop is economically important. This bacterium has also caused millions of dollars in losses to potato, tomato, and several other solanaceous crops in North and Central America and New Zealand, particularly in regions where B. cockerelli is present (3). Furthermore, “Ca. L. solanacearum” has caused significant economic damage to carrot crops in Europe, where it is transmitted by the psyllids Trioza apicalis in northern Europe (4) and B. trigonica in the Mediterranean region (1). References: (1) A. Alfaro-Fernandez et al. Plant Dis. 96:581, 2012. (2) J. M. Crosslin. Southwest. Entomol. 36:125, 2011. (3) J. E. Munyaneza. Am. J. Pot. Res. 89:329, 2012. (4) J. E. Munyaneza et al. J. Econ. Entomol. 103:1060, 2010.


Plant Disease ◽  
2009 ◽  
Vol 93 (2) ◽  
pp. 201-201 ◽  
Author(s):  
L. Cardin ◽  
B. Delecolle ◽  
B. Moury

During surveys of Dichondra repens (kidneyweed, family Convolvulaceae) turfs in public gardens of the Franco-Italian Riviera from 1993 to 2003, leaf mosaic and yellow ringspot symptoms have been observed in Antibes, Menton, Nice, and Vallauris (France) and San Remo and La Mortola (Italy). Isolates from these six locations and from two locations in China (Shanghai and Kunming) have revealed the presence of Cucumber mosaic virus (CMV) based on the behavior of a range of manually inoculated plants (1), the observation of 30 nm isometric particles in semipurified extracts of inoculated Nicotiana tabacum ‘Xanthi’ plants with the electron microscope, and positive reactions in double antibody sandwich (DAS)-ELISAs with specific polyclonal antibodies. All isolates were shown to belong to group II of CMV isolates (3) by double-immunodiffusion analysis. CMV was previously identified in D. repens in California in 1972 (4). Following isolation from local lesions on Vigna unguiculata and multiplication in ‘Xanthi’ tobacco plants, two of the isolates were used to inoculate seedlings of D. repens manually or by Aphis gossypii aphids. Two months later, all inoculated plants showed symptoms similar to those previously observed and were positive in DAS-ELISA. In 2000, a D. repens sample collected in Antibes showing similar symptoms as above, induced necrotic local lesions in inoculated ‘Xanthi’ plants in 48 h, followed by systemic mosaic symptoms typical of CMV, therefore revealing the presence of a second virus. That virus was separated from CMV in apical, noninoculated leaves of Chenopodium quinoa and then used to inoculate a range of test plants. It was infectious in most plants of the families Solanaceae (including Cyphomandra betacea) and Brassicaceae, together with in Chenopodium amaranticolor, C. quinoa, Claytonia perfoliata, Convolvulus spp. ‘Belle de jour’, Digitalis purpurea, Gomphrena globosa, Ocimum basilicum, Plantago lanceolata, and Valerianella olitoria. It induced asymptomatic systemic infections in D. repens. Numerous, rod-shaped, 300 nm long particles were observed in sap extracts of infected plants with the electron microscope, suggesting the presence of a tobamovirus. A set of primers polyvalent for tobamoviruses (2) allowed the amplification of a DNA product of approximately 800 bp through reverse transcription-PCR performed with total RNA extracts from inoculated ‘Xanthi’ plants. The DNA product was cloned and sequenced (GenBank Accession No. EU927306) revealing that the virus belonged to a tobamovirus lineage including Ribgrass mosaic virus and viruses infecting cruciferous plants (Turnip vein-clearing virus [TVCV] and Youcai mosaic virus) and was closest to TVCV (95% amino acid identity; GenBank Accession No. NC_001873). To our knowledge, this is the first report of TVCV in D. repens. References: (1) L. Cardin et al. Plant Dis. 87:200, 2003. (2) A. Gibbs et al. J. Virol. Methods 74:67, 1998. (3) M. J. Roossinck. J. Virol. 76:3382, 2002. (4) L. G. Weathers and D. J. Gumpf. Plant Dis. Rep. 56:27, 1972.


2006 ◽  
Vol 55 (6) ◽  
pp. 820-820 ◽  
Author(s):  
T. Wei ◽  
M. N. Pearson ◽  
D. Cohen

Plant Disease ◽  
2013 ◽  
Vol 97 (8) ◽  
pp. 1122-1122 ◽  
Author(s):  
Z. Perez-Egusquiza ◽  
L. W. Liefting ◽  
L. I. Ward

Rose is the top selling cut flower in New Zealand and is the most popular garden plant in the world. Several virus-like diseases have been described in roses, but the causal agents for many remain unknown. Most of the described viruses infecting rose belong to the genera Ilarvirus and Nepovirus. Only recently, a number of new viruses have been or are in the process of being characterized (1,2,3,4). In January 2011, 10 rose samples showing virus-like symptoms were collected from the Wanganui region on the North Island of New Zealand. Total nucleic acid was extracted from these samples using an InviMag Plant DNA Mini Kit (Invitek GmbH, Berlin, Germany) and a KingFisher mL workstation (Thermo Scientific, Waltham, MA). PCR and reverse transcription (RT)-PCR was conducted using specific primers for Arabis mosaic virus (ArMV), Cherry leaf roll virus, Prunus necrotic ringspot virus (PNRSV), Rosa rugosa leaf distortion virus, Rose spring dwarf associated virus, Rose yellow leaf virus, Rose yellow mosaic virus, Rose yellow vein virus (RYVV), and Strawberry latent ringspot virus. Samples were also tested using generic primers for carlavirus, potexvirus, potyvirus, tombusvirus, and phytoplasmas. Two samples (cvs. Pauls Himalayan Musk and Bloomfield) were positive for ArMV, four samples (cvs. Leda, Rosa Mundi, Charles de Mills, and Indica Major) were positive for PNRSV, and two samples (cvs. Leda and Zephirine Drouhin) were positive for RYVV. Samples were negative for all other tested viruses and phytoplasmas. RYVV was detected using two sets of primers (D. Mollov, personal communication) designed to amplify fragments of estimated sizes of 797 bp and 684 bp of the movement protein (MP) and coat protein (CP) genes of RYVV, respectively. RYVV amplicons were sequenced directly (GenBank Accession Nos. JX887423 to JX887426). A BLASTn search of the MP and CP fragments showed the highest nucleotide identity of 98% and 96 to 97%, respectively, with the type isolate of RYVV (JX028536). RYVV has been reported as the causal agent of a vein yellowing disease in rose (2). Symptoms observed in the ‘Leda’ sample infected with PNRSV and RYVV (vein yellowing and chlorotic mottle in the apex of leaves) were not typical of PNRSV, so they may be caused by RYVV. Symptoms in samples of cv. Zephirine Drouhin (curling of leaves and mottle), observed in both RYVV-positive and -negative samples, may not be associated with RYVV infection. This suggests that vein yellowing may be influenced by cultivar. RYVV has been reported in several rose cultivars, but only in the United States (2). To the best of our knowledge, this is the first report of RYVV infecting rose in New Zealand, where it is likely that the virus has been present for some time. The virus may have a much wider geographical distribution than that reported as the virus was only recently characterized (3). References: (1) B. Lockhart et al. Page 31 in: Program and Abstracts of The 12th International Symposium on Virus Diseases of Ornamental Plants, 2008. (2) D. Mollov et al. Phytopathology 99:S87, 2009. (3) D. Mollov et al. Arch Virol. 158:877, 2012. (4) N. Salem et al. Plant Dis. 92:508, 2008.


Plant Disease ◽  
2016 ◽  
Vol 100 (5) ◽  
pp. 1032-1032 ◽  
Author(s):  
J. Tang ◽  
S. Veerakone ◽  
L. I. Ward

Author(s):  
Egbert W. Henry

Tobacco mosaic virus (TMV) infection has been studied in several investigations of Nicotiana tabacum leaf tissue. Earlier studies have suggested that TMV infection does not have precise infective selectivity vs. specific types of tissues. Also, such tissue conditions as vein banding, vein clearing, liquification and suberization may result from causes other than direct TMV infection. At the present time, it is thought that the plasmodesmata, ectodesmata and perhaps the plasmodesmata of the basal septum may represent the actual or more precise sites of TMV infection.TMV infection has been implicated in elevated levels of oxidative metabolism; also, TMV infection may have a major role in host resistance vs. concentration levels of phenolic-type enzymes. Therefore, enzymes such as polyphenol oxidase, peroxidase and phenylalamine ammonia-lyase may show an increase in activity in response to TMV infection. It has been reported that TMV infection may cause a decrease in o-dihydric phenols (chlorogenic acid) in some tissues.


Author(s):  
Kyriaki Sareli ◽  
Konstantinos Gaitanis ◽  
Ioannis T. Tsialtas ◽  
Stephan Winter ◽  
Elisavet K. Chatzivassiliou

2008 ◽  
Vol 9 (1) ◽  
pp. 42 ◽  
Author(s):  
Rayapati A. Naidu ◽  
Gandhi Karthikeyan

The ornamental Chinese wisteria (Wisteria sinensis) is a woody perennial grown for its flowering habit in home gardens and landscape settings. In this brief, the occurrence of Wisteria vein mosaic virus (WVMV) was reported for the first time in Chinese wisteria in the United States of America. Accepted for publication 18 June 2008. Published 18 August 2008.


Sign in / Sign up

Export Citation Format

Share Document