scholarly journals Multiplex amplification refractory mutation system PCR (ARMS-PCR) provides convenient method for differentiation of canine parvovirus vaccine and field strains

VirusDisease ◽  
2018 ◽  
Vol 29 (4) ◽  
pp. 565-568 ◽  
Author(s):  
Vikas Gupta ◽  
Vishal Chander ◽  
Soumendu Chakravarti ◽  
Gaurav Kumar Sharma ◽  
Javed Ahmed Malla ◽  
...  
2016 ◽  
Vol 46 ◽  
pp. 59-64 ◽  
Author(s):  
Vishal Chander ◽  
Soumendu Chakravarti ◽  
Vikas Gupta ◽  
Sukdeb Nandi ◽  
Mithilesh Singh ◽  
...  

2017 ◽  
Vol 5 (1) ◽  
pp. 81-85 ◽  
Author(s):  
Hemanta Kumari Chaudhary ◽  
Mitesh Shrestha ◽  
Prakash Chaudhary ◽  
Bal Hari Poudel

Multidrug-resistant tuberculosis (MDR-TB) has become a serious worldwide threat including in Nepal. MDR-TB refers to the pathological condition whereby Mycobacterium tuberculosis becomes resistant to the first line of drug treatment i.e. rifampin and isoniazid. Resistance to rifampin (RIF) is mainly caused by the mutations in the rpoB gene which codes for the β-subunit of RNA polymerase. In this study, Amplification Refractory Mutation System – Polymerase Chain Reaction (ARMS – PCR) technique has been used to detect mutations in the rpoB gene of Mycobacterium tuberculosis. Total DNA samples of 34 phenotypic MDR-TB were subjected to ARMS – PCR using three different codon specific primers (516, 526 and 531). These three codons occupy large portion of total mutation responsible for rifampin resistance. Out of the total DNA samples, all were bearing mutation in at least one of the three codons mentioned. Of those bearing mutation, the highest number had mutation in codon 531 (97.05 %) followed by codon 516 (17.64 %) and finally in codon 526 (11.76%) respectively. Hence, ARMS – PCR may be used as an alternative diagnostic technique for detection of rifampin resistance in Mycobacterium tuberculosis strains, especially for a developing country like Nepal.Int. J. Appl. Sci. Biotechnol. Vol 5(1): 81-85


2019 ◽  
Vol 12 (1) ◽  
Author(s):  
Narayan Gautam ◽  
Bhagwati Gaire ◽  
Trishna Manandhar ◽  
Bishnu P. Marasini ◽  
Niranjan Parajuli ◽  
...  

Abstract Objectives The study was carried out to optimize the phenotypic method to characterize the sickle cell trait (SCT), sickle cell anemia (SCA), and β-thalassemia (β-TT) suspected sample from tharu community of South Western province-5, Nepal. SCT and SCA were further evaluated by genotypic method employing amplification refractory mutation system (ARMS PCR). Moreover, Glucose 6 phosphate dehydrogenase (G6PD) was estimated in those hemoglobinopathy to observe its prevalence. The accurate and reliable method can play an important role in reduction of morbidity and mortality rate. Results The 100 suspected cases were subjected to phenotypic method adopting cellulose acetate electrophoresis and genotypic method using ARMS PCR which portraits (5%) SCA positive test showing HBS/HBS, (38%) SCT positive trait HBA/HBS and (36%) cases normal HBA/HBA. β-TT (21%) cases were confirmed by electropherogram. G6PD deficiency was observed in (40%) of SCA, (18.4%) of SCT, (4.8%) of β-TT and (2.8%) in normal cases. Increased G6PD were developed only in SCT (5.3%) and β-TT (4.8%). The study highlighted sickle cell disorder (SCD) and β-TT as the most common hemoglobinopathy coexisting with G6PD deficiency. Though hemoglobinopathy sometime could be protective in malaria but G6PD deficiency can cause massive hemolysis which may exacerbate the condition.


2017 ◽  
Vol 25 (2) ◽  
pp. 321-332
Author(s):  
D. Shimbhu ◽  
S. Mirasena ◽  
M. Sanguansermsri ◽  
T. Sanguansermsri

The number of mutations underlining b-thalassemia generate a wide variety of different clinical phenotypes. An understanding of the genotype is important for medical personnel in order to provide proper counseling to patients and their families. Characterization of these mutations should aid the planning of a prenatal diagnosis program for bthalassemia. The heterogeneity of the mutations makes it difficult and time consuming to identify the mutation in some individuals. We developed a single-tube multiplex amplification refractory mutation system (multiplex ARMS) to identify common ethnic- specific b-thalassemia mutations. Confirmation of multiplex ARMS results was carried out using direct sequencing. Three thousand three hundred twenty two people from Phitsanulok province were screened for the b-thalassemia trait by quantitation of HbA2 with microcolumn chromatography and the genotypes of mutations were characterized using multiplex ARMS and direct sequencing. We found that the deletion at codons 41/42 (-TCTT) was the most frequent (48%), codon 17 (A®T) (30%), -28 (A®G) (6%) and IVS-I-1(G®T) (6%) were the second and third in frequency respectively. A -87 (C®A) mutation (4%), IVS II-654 (C®T) (2%), codons 71/72 (+A) (2%) and codon 35 (C®A) mutations (2%) were also found. These techniques were found to be a valuable tool for analysis of b-thalassemia mutations because they are accurate, simple, and speedy in operation. The application for the diagnosis of severe thalassemia in high-risk pregnancies is promising.    


2019 ◽  
Author(s):  
Narayan Gautam ◽  
Bhagwati Gaire ◽  
Trishna Manandhar ◽  
Bishnu P Marasini ◽  
Niranjan Parajuli ◽  
...  

Abstract Objectives: The study was carried out to optimize the phenotypic method to characterize the sickle cell trait (SCT), sickle cell anaemia (SCA) and β-thalassemia (β-TT) suspected sample from tharu community of South Western province-5, Nepal. SCT and SCA were further evaluated by genotypic method employing amplification refractory mutation system (ARMS PCR). Moreover, Glucose 6 Phosphate Dehydrogenase (G6PD) was estimated in those hemoglobinopathy to observe its prevalence. The accurate and reliable method can play an important role in reduction of morbidity and mortality rate. Results: The 100 suspected cases were subjected to phenotypic method adopting cellulose acetate electrophoresis and genotypic metod using ARMS PCR which portraits (5%) SCA positive test showing HBS/HBS, (38%) SCT positive trait HBA/HBS and (36%) cases normal HBA/HBA. β-TT (21%) cases were confirmed by electropherogram. G6PD deficiency was observed in (40%) of SCA, (18.4%) of SCT, (4.8%) of β-TT and (2.8%) in normal cases. Increased G6PD were developed only in SCT (5.3 %) and β-TT (4.8%). The study highlighted sickle cell disorder (SCD) and β-TT as the most common hemoglobinopathy coexisting with G6PD deficiency. Though hemoglobinopathy sometime could be protective in malaria but G6PD deficiency can cause massive hemolysis which may exacerbate the condition.


Sign in / Sign up

Export Citation Format

Share Document