multiplex amplification
Recently Published Documents


TOTAL DOCUMENTS

93
(FIVE YEARS 15)

H-INDEX

22
(FIVE YEARS 2)

2021 ◽  
Vol 12 ◽  
Author(s):  
Berit Samils ◽  
Björn Andersson ◽  
Eva Edin ◽  
Malin Elfstrand ◽  
Tilman Rönneburg ◽  
...  

Fungicide resistance has become a challenging problem in management of Septoria tritici blotch (STB), caused by Zymoseptoria tritici, the most destructive disease of winter wheat throughout western and northern Europe. To ensure the continued effectiveness of those fungicides currently used, it is essential to monitor the development and spread of such resistance in field populations of the pathogen. Since resistance to the key families of fungicides used for STB control (demethyalation inhibitors or azoles, succinate dehydrogenase inhibitors or SDHIs and Quinone outside Inhibitors or QoIs) is conferred through target-site mutations, the potential exists to monitor resistance through the molecular detection of alterations in the target site genes. As more efficient fungicides were developed and applied, the pathogen has continuously adapted through accumulating multiple target-site alterations. In order to accurately monitor these changes in field populations, it is therefore becoming increasingly important to completely sequence the targeted genes. Here we report the development of a PacBio assay that facilitates the multiplex amplification and long-read sequencing of the target gene(s) for the azole (CYP51), SDHI (Sdh B, C, and D), and QoI (cytochrome b) fungicides. The assay was developed and optimised using three Irish Z. tritici collections established in spring 2017, which capture the range of fungicide resistance present in modern European populations of Z. tritici. The sequences obtained through the PacBio assay were validated using traditional Sanger sequencing and in vitro sensitivity screenings. To further exploit the long-read and high throughput potential of PacBio sequencing, an additional nine housekeeping genes (act, BTUB, cal, cyp, EF1, GAPDH, hsp80-1, PKC, TFC1) were sequenced and used to provide comprehensive Z. tritici strain genotyping.


2021 ◽  
Vol 6 (2) ◽  
pp. 90
Author(s):  
Sessi Frida Tovo ◽  
Théodora Mahoukèdè Zohoncon ◽  
Amana Metuor Dabiré ◽  
Régine Ilboudo ◽  
Rahimatou Yasmine Tiemtoré ◽  
...  

Viral and bacterial infections represent an occupational risk for female sex workers. This study aimed at determining HPV coinfection with genital pathogens among female sex workers in West and Central Africa and identifying antibiotic resistance genes. A total of 182 samples from female sex workers were analyzed by real-time PCR and classic PCR. For the molecular diagnosis of HPV, the real-time multiplex amplification kit “HPV Genotypes 14 Real-TM Quant” from SACACE Biotechnologies®, detecting 14 high-risk HPV genotypes, was used, while for other pathogens, the real-time multiplex amplification kit N. gonorrhoeae/C. trachomatis/M. genitalium/T. vaginalis Real-TM, allowing their simultaneous detection, was used. The women were aged 17–50 years with an average age of 27.12 ± 6.09 years. The pathogens identified were HPV 54.94% (100/120), Neisseria gonorrhoeae (13.74%), Chlamydia trachomatis (11.54%) and Mycoplasma genitalium (11.54%). The most common HPV genotypes were HPV68, HPV38 and HPV52. The antibiotic resistance genes identified were bla QNR B 24.00%, bla GES 22.00%, bla SHV 17.00%, blaCTX-M 13.00% and bla QNR S 1.00%. This study revealed the presence of various HPV genotypes associated with other pathogens with problems of antibiotic resistance among sex workers of West and Central African origin working in Ouagadougou.


2021 ◽  
Vol 12 ◽  
Author(s):  
Rui Jin ◽  
Wei Cui ◽  
Yating Fang ◽  
Xiaoye Jin ◽  
Hongdan Wang ◽  
...  

Insertion/deletion polymorphism is a promising genetic marker in the forensic genetic fields, especially in the forensic application of degraded sample at crime scene. In this research, a novel five-dye multiplex amplification panel containing 43 highly polymorphic Insertion/deletion (InDel) loci and one Amelogenin gene locus is designed and constructed in-house for the individual identification in East Asian populations. The amplicon sizes of 43 InDel loci are less than 200 bp, which help to ensure that full allele profiles can be obtained from degraded DNA sample. A series of optimizations and developmental validations including optimization of PCR conditions, detection efficiency of the degraded and casework samples, sensitivity, reproducibility, precision, tolerance for inhibitors, species specificity and DNA mixtures are performed according to the Scientific Working Group on DNA Analysis Methods (SWGDAM) guideline. The results of the internal validation demonstrated that this novel InDel panel was a reliable, sensitive and accurate system with good tolerances to different inhibitors, and performed the considerable detection efficiency for the degraded or mixed samples, which could be used in the forensic applications.


Lab on a Chip ◽  
2021 ◽  
Author(s):  
Zhenqing Li ◽  
Jiahui Liu ◽  
Ping Wang ◽  
Chunxian Tao ◽  
Lulu Zheng ◽  
...  

Porphyromonas gingivalis (P.g), Treponema denticola (T.d), and Tannerella forsythia (T.f) are supposed as the major periodontal pathogens induced gingivitis, which affects 50-90% adults worldwide. Microfluidic chip based on continuous flow...


2020 ◽  
Vol 2020 ◽  
pp. 1-6
Author(s):  
Ludmilla OGOUMA-AWORET ◽  
Jean-Pierre RABES ◽  
Philippe de MAZANCOURT

Hereditary hemochromatosis is an autosomal recessive disorder with incomplete penetrance that results from excess iron absorption and can lead to chronic liver disease, fibrosis, cirrhosis, and hepatocellular carcinoma. The most common form of hereditary hemochromatosis in Western Europe is due to a homozygous mutation (p.(Cys282Tyr) or C282Y), in the HFE gene which encodes hereditary haemochromatosis protein. In the general European population, the frequency of the homozygous genotype is 0.4%, and this mutation explains up to 95% of hereditary hemochromatosis in France. We report here an improved PCR and restriction endonuclease assay based on multiplex amplification of HFE exon 4 (for C282Y detection), HFE exon 2 (for H63D detection), FZD1 gene (for digestion controls), and two Short Tandem Repeats (SE33 and FGA) for identity monitoring and contamination tracking. Fluorescent primers allow capillary electrophoresis, accurate allele tagging, and sensitive contamination detection.


2020 ◽  
Vol 480 ◽  
pp. 112752
Author(s):  
Christoph Kreer ◽  
Matthias Döring ◽  
Nathalie Lehnen ◽  
Meryem S. Ercanoglu ◽  
Lutz Gieselmann ◽  
...  

2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Heshan Du ◽  
Jingjing Yang ◽  
Bin Chen ◽  
Xiaofen Zhang ◽  
Jian Zhang ◽  
...  

Abstract Background The widely cultivated pepper (Capsicum spp.) is one of the most diverse vegetables; however, little research has focused on characterizing the genetic diversity and relatedness of commercial varieties grown in China. In this study, a panel of 92 perfect single-nucleotide polymorphisms (SNPs) was identified using re-sequencing data from 35 different C. annuum lines. Based on this panel, a Target SNP-seq genotyping method was designed, which combined multiplex amplification of perfect SNPs with Illumina sequencing, to detect polymorphisms across 271 commercial pepper varieties. Results The perfect SNPs panel had a high discriminating capacity due to the average value of polymorphism information content, observed heterozygosity, expected heterozygosity, and minor allele frequency, which were 0.31, 0.28, 0.4, and 0.31, respectively. Notably, the studied pepper varieties were morphologically categorized based on fruit shape as blocky-, long horn-, short horn-, and linear-fruited. The long horn-fruited population exhibited the most genetic diversity followed by the short horn-, linear-, and blocky-fruited populations. A set of 35 core SNPs were then used as kompetitive allele-specific PCR (KASPar) markers, another robust genotyping technique for variety identification. Analysis of genetic relatedness using principal component analysis and phylogenetic tree construction indicated that the four fruit shape populations clustered separately with limited overlaps. Based on STRUCTURE clustering, it was possible to divide the varieties into five subpopulations, which correlated with fruit shape. Further, the subpopulations were statistically different according to a randomization test and Fst statistics. Nine loci, located on chromosomes 1, 2, 3, 4, 6, and 12, were identified to be significantly associated with the fruit shape index (p < 0.0001). Conclusions Target SNP-seq developed in this study appears as an efficient power tool to detect the genetic diversity, population relatedness and molecular breeding in pepper. Moreover, this study demonstrates that the genetic structure of Chinese pepper varieties is significantly influenced by breeding programs focused on fruit shape.


Sign in / Sign up

Export Citation Format

Share Document