Curcumin-loaded self-nanomicellizing solid dispersion system: part II: in vivo safety and efficacy assessment against behavior deficit in Alzheimer disease

2018 ◽  
Vol 8 (5) ◽  
pp. 1406-1420 ◽  
Author(s):  
Ankit Parikh ◽  
Krishna Kathawala ◽  
Jintao Li ◽  
Chi Chen ◽  
Zhengnan Shan ◽  
...  
1996 ◽  
Vol 44 (12) ◽  
pp. 2309-2313 ◽  
Author(s):  
Katsuhiko YANO ◽  
Atsushi KAJIYAMA ◽  
Shigeru YAMAZAKI ◽  
Yoshisuke MATSUMURA ◽  
Kouji WATANABE ◽  
...  

2015 ◽  
Vol 496 (1) ◽  
pp. 137-156 ◽  
Author(s):  
Ritesh Fule ◽  
Dinesh Dhamecha ◽  
Mohammed Maniruzzaman ◽  
Anubha Khale ◽  
Purnima Amin

Author(s):  
DHEA A. RAMADHANI ◽  
ADI YUGATAMA ◽  
DIAN E. ERMAWATI

Objective: NSAIDs are very hydrophobic drugs and have low solubility. This causes the bioavailability of NSAIDs to be low in the body thus affect its anti-inflammatory activity. There has been some primary research proven that solid dispersion can increase the solubility and anti-inflammatory activity of NSAIDs. Moreover, there are not researches explaining the effect of a solid dispersion system on the anti-inflammatory activity of NSAIDs. Therefore, it is necessary to conduct a review to assess the effect of the solid dispersion system on the solubility and anti-inflammatory activity of NSAIDs systematically. Methods: This was systematic review research, where the data were originated from PubMed and Science Direct with the keywords ‘NSAID’, ‘solid dispersion’, and ‘drug effect’. The inclusion criteria formulated were English-language papers, published in 2010–2020, and primary research that conducted in vivo anti-inflammatory testing. The appropriate papers by the inclusion criteria were assessed its quality by the SYRCLE’s tool. Data was analyzed narratively. Results: The results were eight papers under the inclusion criteria. As a whole is known modification of solid dispersion can increase the dissolution profile of NSAIDs. This is because the polymer used can increase the wetting of drug particles, thereby being able to increase the solubility of NSAIDs. Conclusion: The anti-inflammatory activity of NSAIDs by solid dispersion systems are increases compared to NSAIDs without solid dispersions.


2018 ◽  
Vol 8 (5) ◽  
pp. 1389-1405 ◽  
Author(s):  
Ankit Parikh ◽  
Krishna Kathawala ◽  
Yunmei Song ◽  
Xin-Fu Zhou ◽  
Sanjay Garg

2012 ◽  
Vol 9 (4) ◽  
pp. 395-404 ◽  
Author(s):  
Gayatri C. Patel ◽  
Khusman V. Asodaria ◽  
Hetal P. Patel ◽  
Dinesh R. Shah

Eye ◽  
2021 ◽  
Author(s):  
Huping Wu ◽  
Lan Li ◽  
Shunrong Luo ◽  
Xie Fang ◽  
Xumin Shang ◽  
...  

Abstract Objectives To evaluate the safety and efficacy of repeated corneal collagen crosslinking assisted by transepithelial double-cycle iontophoresis (DI-CXL) in the management of keratoconus progression after primary CXL. Methods A retrospective analysis was conducted in the patients who underwent repeated CXL between 2016 and 2018. These patients were treated with DI-CXL if keratoconus progression was confirmed after primary CXL. Scoring of ocular pain and corneal epithelial damage, visual acuity, corneal tomography, in vivo corneal confocal microscopy (IVCM) was performed before and at 3, 6, 12, and 24 months after DI-CXL. Results Overall, 21 eyes of 12 patients (mean age 17.3 ± 1.9 years) were included in this study. Before DI-CXL, an average increase of 4.26 D in Kmax was detected in these patients with a mean follow-up interval of (23.0 ± 13.7) months. After DI-CXL, corneal epithelial damage rapidly recovered within days. Visual acuity remained unchanged with follow-up of 24 months. When compared to baseline, significant decreases were observed in Kmax (at 3 months) and K2 (at 3 and 6 months) after DI-CXL. Corneal thickness of thinnest point significantly decreased at 3 months postoperatively. When compared to baseline, no significant differences were found in any of the refractive or tomographic parameters at 12 and 24 months. IVCM revealed trabecular patterned hyperdense tissues after DI-CXL in the anterior stroma at the depth of 200 μm or more. No corneal infiltration or persistent epithelial defect was recorded after DI-CXL. Conclusion DI-CXL is safe and effective as a good alternative in stabilizing keratoconus progression after primary CXL.


Author(s):  
Yong Zhu ◽  
Jamal Saada ◽  
Shrestha Bhawana ◽  
Sam Lai ◽  
Paula Villarreal ◽  
...  

Abstract High unintended pregnancy rates are partially due to lack of effective nonhormonal contraceptives; development of safe, effective topical vaginal methods will address this need. Preclinical product safety and efficacy assessment requires in vivo testing in appropriate models. The sheep is a good model for the evaluation of vaginally delivered products due to its close similarities to humans. The study objective was to develop an ovine model for efficacy testing of female nonhormonal contraceptives that target human sperm. Fresh human semen was pooled from male volunteers. Nonpregnant female Merino sheep were treated with control or vaginal contraceptive product (IgG antibody with action against sperm or nonoxynol-9 [N9]). Pooled semen was added to the sheep vagina and mixed with product and vaginal secretions. Microscopic assessment of samples was performed immediately and progressive motility (PM) of sperm was compared between treatments. Cytokines CXCL8 and IL1B were assessed in vaginal fluid after instillation of human semen. No adverse reactions or elevations in proinflammatory cytokines occurred in response to human semen. N9 produced signs of acute cellular toxicity while there were no cellular changes after IgG treatment. N9 and IgG had dose-related effects with the highest dose achieving complete sperm immobilization (no sperm with PM). Surrogate post-coital testing of vaginally administered contraceptives that target human semen was developed in an ovine model established for vaginal product preclinical testing. This expanded model can aid the development of much needed nonhormonal topical vaginal contraceptives, providing opportunities for rapid iterative drug development prior to costly, time-intensive human testing.


2021 ◽  
Author(s):  
Clara Serrano Zueras ◽  
Verónica Guilló Moreno ◽  
Martín Santos González ◽  
Francisco Javier Gómez Nieto ◽  
Göran Hedenstierna ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document