scholarly journals A Soil Moisture Data Assimilation System for Pakistan Using PODEn4DVar and CLM4.5

2019 ◽  
Vol 33 (6) ◽  
pp. 1182-1193
Author(s):  
Tariq Mahmood ◽  
Zhenghui Xie ◽  
Binghao Jia ◽  
Ammara Habib ◽  
Rashid Mahmood
Atmosphere ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 1089
Author(s):  
Sanghee Jun ◽  
Jeong-Hyun Park ◽  
Hyun-Joo Choi ◽  
Yong-Hee Lee ◽  
Yoon-Jin Lim ◽  
...  

Accurate initial soil moisture conditions are essential for numerical weather prediction models, because they play a major role in land–atmosphere interactions. This study constructed a soil moisture data assimilation system and evaluated its impacts on the Global Data Assimilation and Prediction System based on the Korea Integrated Model (GDAPS-KIM) to improve its weather forecast skill. Soil moisture data retrieved from the Advanced Scatterometer (ASCAT) onboard the Meteorological Operational Satellite was assimilated into GDAPS-KIM using the ensemble Kalman filter method, and its impacts were evaluated for the 2019 boreal summer period. Our results indicated that the soil moisture data assimilation improved the agreement of the observations with the initial conditions of GDAPS-KIM. This led to a statistically significant improvement in the accuracy of the initial fields. A comparison of a five-day forecast against an ERA5 reanalysis and in situ observations revealed a reduction in the dry and warm biases of GDAPS-KIM over the surface and in the lower- and mid-level atmospheres. The temperature bias correction through the initialization of the soil moisture estimates from the data assimilation system was shown in the five-day weather forecast (root mean squared errors reduction of the temperature at 850 hPa by approximately 5% in East Asia).


2006 ◽  
Vol 134 (1) ◽  
pp. 134-148 ◽  
Author(s):  
Peter P. Childs ◽  
Aneela L. Qureshi ◽  
Sethu Raman ◽  
Kiran Alapaty ◽  
Robb Ellis ◽  
...  

Abstract The Flux-Adjusting Surface Data Assimilation System (FASDAS) uses the surface observational analysis to directly assimilate surface layer temperature and water vapor mixing ratio and to indirectly assimilate soil moisture and soil temperature in numerical model predictions. Both soil moisture and soil temperature are important variables in the development of deep convection. In this study, FASDAS coupled within the fifth-generation Pennsylvania State University–NCAR Mesoscale Model (MM5) was used to study convective initiation over the International H2O Project (IHOP_2002) region, utilizing the analyzed surface observations collected during IHOP_2002. Two 72-h numerical simulations were performed. A control simulation was run that assimilated all available IHOP_2002 measurements into the standard MM5 four-dimensional data assimilation. An experimental simulation was also performed that assimilated all available IHOP_2002 measurements into the FASDAS version of the MM5, where surface observations were used for the FASDAS coupling. Results from this case study suggest that the use of FASDAS in the experimental simulation led to the generation of greater amounts of precipitation over a more widespread area as compared to the standard MM5 FDDA used in the control simulation. This improved performance is attributed to better simulation of surface heat fluxes and their gradients.


2008 ◽  
Vol 9 (1) ◽  
pp. 116-131 ◽  
Author(s):  
Bart van den Hurk ◽  
Janneke Ettema ◽  
Pedro Viterbo

Abstract This study aims at stimulating the development of soil moisture data assimilation systems in a direction where they can provide both the necessary control of slow drift in operational NWP applications and support the physical insight in the performance of the land surface component. It addresses four topics concerning the systematic nature of soil moisture data assimilation experiments over Europe during the growing season of 2000 involving the European Centre for Medium-Range Weather Forecasts (ECMWF) model infrastructure. In the first topic the effect of the (spinup related) bias in 40-yr ECMWF Re-Analysis (ERA-40) precipitation on the data assimilation is analyzed. From results averaged over 36 European locations, it appears that about half of the soil moisture increments in the 2000 growing season are attributable to the precipitation bias. A second topic considers a new soil moisture data assimilation system, demonstrated in a coupled single-column model (SCM) setup, where precipitation and radiation are derived from observations instead of from atmospheric model fields. For many of the considered locations in this new system, the accumulated soil moisture increments still exceed the interannual variability estimated from a multiyear offline land surface model run. A third topic examines the soil water budget in response to these systematic increments. For a number of Mediterranean locations the increments successfully increase the surface evaporation, as is expected from the fact that atmospheric moisture deficit information is the key driver of soil moisture adjustment. In many other locations, however, evaporation is constrained by the experimental SCM setup and is hardly affected by the data assimilation. Instead, a major portion of the increments eventually leave the soil as runoff. In the fourth topic observed evaporation is used to evaluate the impact of the data assimilation on the forecast quality. In most cases, the difference between the control and data assimilation runs is considerably smaller than the (positive) difference between any of the simulations and the observations.


Sign in / Sign up

Export Citation Format

Share Document