Analysis of Soil Moisture Changes in Europe during a Single Growing Season in a New ECMWF Soil Moisture Assimilation System

2008 ◽  
Vol 9 (1) ◽  
pp. 116-131 ◽  
Author(s):  
Bart van den Hurk ◽  
Janneke Ettema ◽  
Pedro Viterbo

Abstract This study aims at stimulating the development of soil moisture data assimilation systems in a direction where they can provide both the necessary control of slow drift in operational NWP applications and support the physical insight in the performance of the land surface component. It addresses four topics concerning the systematic nature of soil moisture data assimilation experiments over Europe during the growing season of 2000 involving the European Centre for Medium-Range Weather Forecasts (ECMWF) model infrastructure. In the first topic the effect of the (spinup related) bias in 40-yr ECMWF Re-Analysis (ERA-40) precipitation on the data assimilation is analyzed. From results averaged over 36 European locations, it appears that about half of the soil moisture increments in the 2000 growing season are attributable to the precipitation bias. A second topic considers a new soil moisture data assimilation system, demonstrated in a coupled single-column model (SCM) setup, where precipitation and radiation are derived from observations instead of from atmospheric model fields. For many of the considered locations in this new system, the accumulated soil moisture increments still exceed the interannual variability estimated from a multiyear offline land surface model run. A third topic examines the soil water budget in response to these systematic increments. For a number of Mediterranean locations the increments successfully increase the surface evaporation, as is expected from the fact that atmospheric moisture deficit information is the key driver of soil moisture adjustment. In many other locations, however, evaporation is constrained by the experimental SCM setup and is hardly affected by the data assimilation. Instead, a major portion of the increments eventually leave the soil as runoff. In the fourth topic observed evaporation is used to evaluate the impact of the data assimilation on the forecast quality. In most cases, the difference between the control and data assimilation runs is considerably smaller than the (positive) difference between any of the simulations and the observations.

2006 ◽  
Vol 134 (1) ◽  
pp. 113-133 ◽  
Author(s):  
Teddy R. Holt ◽  
Dev Niyogi ◽  
Fei Chen ◽  
Kevin Manning ◽  
Margaret A. LeMone ◽  
...  

Abstract Numerical simulations are conducted using the Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS) to investigate the impact of land–vegetation processes on the prediction of mesoscale convection observed on 24–25 May 2002 during the International H2O Project (IHOP_2002). The control COAMPS configuration uses the Weather Research and Forecasting (WRF) model version of the Noah land surface model (LSM) initialized using a high-resolution land surface data assimilation system (HRLDAS). Physically consistent surface fields are ensured by an 18-month spinup time for HRLDAS, and physically consistent mesoscale fields are ensured by a 2-day data assimilation spinup for COAMPS. Sensitivity simulations are performed to assess the impact of land–vegetative processes by 1) replacing the Noah LSM with a simple slab soil model (SLAB), 2) adding a photosynthesis, canopy resistance/transpiration scheme [the gas exchange/photosynthesis-based evapotranspiration model (GEM)] to the Noah LSM, and 3) replacing the HRLDAS soil moisture with the National Centers for Environmental Prediction (NCEP) 40-km Eta Data Assimilation (EDAS) operational soil fields. CONTROL, EDAS, and GEM develop convection along the dryline and frontal boundaries 2–3 h after observed, with synoptic-scale forcing determining the location and timing. SLAB convection along the boundaries is further delayed, indicating that detailed surface parameterization is necessary for a realistic model forecast. EDAS soils are generally drier and warmer than HRLDAS, resulting in more extensive development of convection along the dryline than for CONTROL. The inclusion of photosynthesis-based evapotranspiration (GEM) improves predictive skill for both air temperature and moisture. Biases in soil moisture and temperature (as well as air temperature and moisture during the prefrontal period) are larger for EDAS than HRLDAS, indicating land–vegetative processes in EDAS are forced by anomalously warmer and drier conditions than observed. Of the four simulations, the errors in SLAB predictions of these quantities are generally the largest. By adding a sophisticated transpiration model, the atmospheric model is able to better respond to the more detailed representation of soil moisture and temperature. The sensitivity of the synoptically forced convection to soil and vegetative processes including transpiration indicates that detailed representation of land surface processes should be included in weather forecasting models, particularly for severe storm forecasting where local-scale information is important.


Author(s):  
Nemesio Rodriguez-Fernandez ◽  
Patricia de Rosnay ◽  
Clement Albergel ◽  
Philippe Richaume ◽  
Filipe Aires ◽  
...  

The assimilation of Soil Moisture and Ocean Salinity (SMOS) data into the ECMWF (European Centre for Medium Range Weather Forecasts) H-TESSEL (Hydrology revised - Tiled ECMWF Scheme for Surface Exchanges over Land) model is presented. SMOS soil moisture (SM) estimates have been produced specifically by training a neural network with SMOS brightness temperatures as input and H-TESSEL model SM simulations as reference. This can help the assimilation of SMOS information in several ways: (1) the neural network soil moisture (NNSM) data have a similar climatology to the model, (2) no global bias is present with respect to the model even if regional differences can exist. Experiments performing joint data assimilation (DA) of NNSM, 2 metre air temperature and relative humidity or NNSM-only DA are discussed. The resulting SM was evaluated against a large number of in situ measurements of SM obtaining similar results to those of the model with no assimilation, even if significant differences were found from site to site. In addition, atmospheric forecasts initialized with H-TESSEL runs (without DA) or with the analysed SM were compared to measure of the impact of the satellite information. Although, NNSM DA has an overall neutral impact in the forecast in the Tropics, a significant positive impact was found in other areas and periods, especially in regions with limited in situ information. The joint NNSM, T2m and RH2m DA improves the forecast for all the seasons in the Southern Hemisphere. The impact is mostly due to T2m and RH2m, but SMOS NN DA alone also improves the forecast in July- September. In the Northern Hemisphere, the joint NNSM, T2m and RH2m DA improves the forecast in April-September, while NNSM alone has a significant positive effect in July-September. Furthermore, forecasting skill maps show that SMOS NNSM improves the forecast in North America and in Northern Asia for up to 72 hours lead time.


2019 ◽  
Vol 147 (12) ◽  
pp. 4345-4366 ◽  
Author(s):  
Liao-Fan Lin ◽  
Zhaoxia Pu

Abstract Remotely sensed soil moisture data are typically incorporated into numerical weather models under a framework of weakly coupled data assimilation (WCDA), with a land surface analysis scheme independent from the atmospheric analysis component. In contrast, strongly coupled data assimilation (SCDA) allows simultaneous correction of atmospheric and land surface states but has not been sufficiently explored with land surface soil moisture data assimilation. This study implemented a variational approach to assimilate the Soil Moisture Active Passive (SMAP) 9-km enhanced retrievals into the Noah land surface model coupled with the Weather Research and Forecasting (WRF) Model under a framework of both WCDA and SCDA. The goal of the study is to quantify the relative impact of assimilating SMAP data under different coupling frameworks on the atmospheric forecasts in the summer. The results of the numerical experiments during July 2016 show that SCDA can provide additional benefits on the forecasts of air temperature and humidity compared to WCDA. Over the U.S. Great Plains, assimilation of SMAP data under WCDA reduces a warm bias in temperature and a dry bias in humidity by 7.3% and 19.3%, respectively, while the SCDA case contributes an additional bias reduction of 2.2% (temperature) and 3.3% (humidity). While WCDA leads to a reduction of RMSE in temperature forecasts by 4.1%, SCDA results in additional reduction of RMSE by 0.8%. For the humidity, the reduction of RMSE is around 1% for both WCDA and SCDA.


2018 ◽  
Vol 15 (4) ◽  
pp. 498-502 ◽  
Author(s):  
Clay B. Blankenship ◽  
Jonathan L. Case ◽  
William L. Crosson ◽  
Bradley T. Zavodsky

2020 ◽  
Vol 12 (12) ◽  
pp. 2020 ◽  
Author(s):  
Anthony Mucia ◽  
Bertrand Bonan ◽  
Yongjun Zheng ◽  
Clément Albergel ◽  
Jean-Christophe Calvet

LDAS-Monde is a global land data assimilation system (LDAS) developed by Centre National de Recherches Météorologiques (CNRM) to monitor land surface variables (LSV) at various scales, from regional to global. With LDAS-Monde, it is possible to jointly assimilate satellite-derived observations of surface soil moisture (SSM) and leaf area index (LAI) into the interactions between soil biosphere and atmosphere (ISBA) land surface model (LSM) in order to analyze the soil moisture profile together with vegetation biomass. In this study, we investigate LDAS-Monde’s ability to predict LSV states up to two weeks in the future using atmospheric forecasts. In particular, the impact of the initialization, and the evolution of the forecasted variables in the LSM are addressed. LDAS-Monde is an offline system normally driven by atmospheric reanalysis, but in this study is forced by atmospheric forecasts from the European Centre for Medium-Range Weather Forecasts (ECMWF) for the 2017–2018 period over the contiguous United States (CONUS) at a 0.2° × 0.2° spatial resolution. These LSV forecasts are initialized either by the model alone (LDAS-Monde open-loop, without assimilation) or by the analysis (assimilation of SSM and LAI). These two forecasts are then evaluated using satellite-derived observations of SSM and LAI, evapotranspiration (ET) estimates, as well as in situ measurements of soil moisture from the U.S. Climate Reference Network (USCRN). Results indicate that for the three evaluation variables (SSM, LAI, and ET), LDAS-Monde provides reasonably accurate and consistent predictions two weeks in advance. Additionally, the initial conditions after assimilation are shown to make a positive impact with respect to LAI and ET. This impact persists in time for these two vegetation-related variables. Many model variables, such as SSM, root zone soil moisture (RZSM), LAI, ET, and drainage, remain relatively consistent as the forecast lead time increases, while runoff is highly variable.


2019 ◽  
Vol 11 (11) ◽  
pp. 1334 ◽  
Author(s):  
Nemesio Rodríguez-Fernández ◽  
Patricia de Rosnay ◽  
Clement Albergel ◽  
Philippe Richaume ◽  
Filipe Aires ◽  
...  

The assimilation of Soil Moisture and Ocean Salinity (SMOS) data into the ECMWF (European Centre for Medium Range Weather Forecasts) H-TESSEL (Hydrology revised-Tiled ECMWF Scheme for Surface Exchanges over Land) model is presented. SMOS soil moisture (SM) estimates have been produced specifically by training a neural network with SMOS brightness temperatures as input and H-TESSEL model SM simulations as reference. This can help the assimilation of SMOS information in several ways: (1) the neural network soil moisture (NNSM) data have a similar climatology to the model, (2) no global bias is present with respect to the model even if local biases can remain. Experiments performing joint data assimilation (DA) of NNSM, 2 m air temperature and relative humidity or NNSM-only DA are discussed. The resulting SM was evaluated against a large number of in situ measurements of SM obtaining similar results to those of the model with no assimilation, even if significant differences were found from site to site. In addition, atmospheric forecasts initialized with H-TESSEL runs (without DA) or with the analysed SM were compared to measure of the impact of the satellite information. Although NNSM DA has an overall neutral impact in the forecast in the Tropics, a significant positive impact was found in other areas and periods, especially in regions with limited in situ information. The joint NNSM, T2m and RH2m DA improves the forecast for all the seasons in the Southern Hemisphere. The impact is mostly due to T2m and RH2m but SMOS NN DA alone also improves the forecast in July- September. In the Northern Hemisphere, the joint NNSM, T2m and RH2m DA improves the forecast in April–September, while NNSM alone has a significant positive effect in July–September. Furthermore, forecasting skill maps show that SMOS NNSM improves the forecast in North America and in Northern Asia for up to 72 h lead time.


2006 ◽  
Vol 111 (D17) ◽  
Author(s):  
L. Gustavo Goncalves de Goncalves ◽  
William James Shuttleworth ◽  
Eleanor J. Burke ◽  
Paul Houser ◽  
David L. Toll ◽  
...  

2021 ◽  
Author(s):  
Samuel Scherrer ◽  
Wolfgang Preimesberger ◽  
Monika Tercjak ◽  
Zoltan Bakcsa ◽  
Alexander Boresch ◽  
...  

<p>To validate satellite soil moisture products and compare their quality with other products, standardized, fully traceable validation methods are required. The QA4SM (Quality Assurance for Soil Moisture; ) free online validation tool provides an easy-to-use implementation of community best practices and requirements set by the Global Climate Observing System and the Committee on Earth Observation Satellites. It sets the basis for a community wide standard for validation studies.</p><p>QA4SM can be used to preprocess, intercompare, store, and visualise validation results. It uses state-of-the-art open-access soil moisture data records such as the European Space Agency’s Climate Change Initiative (ESA CCI) and the Copernicus Climate Change Services (C3S) soil moisture datasets, as well as single-sensor products, e.g. H-SAF Metop-A/B ASCAT surface soil moisture, SMOS-IC, and SMAP L3 soil moisture. Non-satellite data include in-situ data from the International Soil Moisture Network (ISMN: ), as well as land surface model or reanalysis products, e.g. ERA5 soil moisture.</p><p>Users can interactively choose temporal or spatial subsets of the data and apply filters on quality flags. Additionally, validation of anomalies and application of different scaling methods are possible. The tool provides traditional validation metrics for dataset pairs (e.g. correlation, RMSD) as well as triple collocation metrics for dataset triples. All results can be visualised on the webpage, downloaded as figures, or downloaded in NetCDF format for further use. Archiving and publishing features allow users to easily store and share validation results. Published validation results can be cited in reports and publications via DOIs.</p><p>The new version of the service provides support for high-resolution soil moisture products (from Sentinel-1), additional datasets, and improved usability.</p><p>We present an overview and examples of the online tool, new features, and give an outlook on future developments.</p><p><em>Acknowledgements: This work was supported by the QA4SM & QA4SM-HR projects, funded by the Austrian Space Applications Programme (FFG).</em></p>


Sign in / Sign up

Export Citation Format

Share Document