scholarly journals Evaluation of Digital Image Recognition Methods for Mass Spectrometry Imaging Data Analysis

2018 ◽  
Vol 29 (12) ◽  
pp. 2467-2470 ◽  
Author(s):  
Måns Ekelöf ◽  
Kenneth P. Garrard ◽  
Rika Judd ◽  
Elias P. Rosen ◽  
De-Yu Xie ◽  
...  
2019 ◽  
Author(s):  
Melanie Christine Föll ◽  
Lennart Moritz ◽  
Thomas Wollmann ◽  
Maren Nicole Stillger ◽  
Niklas Vockert ◽  
...  

AbstractBackgroundMass spectrometry imaging is increasingly used in biological and translational research as it has the ability to determine the spatial distribution of hundreds of analytes in a sample. Being at the interface of proteomics/metabolomics and imaging, the acquired data sets are large and complex and often analyzed with proprietary software or in-house scripts, which hinder reproducibility. Open source software solutions that enable reproducible data analysis often require programming skills and are therefore not accessible to many MSI researchers.FindingsWe have integrated 18 dedicated mass spectrometry imaging tools into the Galaxy framework to allow accessible, reproducible, and transparent data analysis. Our tools are based on Cardinal, MALDIquant, and scikit-image and enable all major MSI analysis steps such as quality control, visualization, preprocessing, statistical analysis, and image co-registration. Further, we created hands-on training material for use cases in proteomics and metabolomics. To demonstrate the utility of our tools, we re-analyzed a publicly available N-linked glycan imaging dataset. By providing the entire analysis history online, we highlight how the Galaxy framework fosters transparent and reproducible research.ConclusionThe Galaxy framework has emerged as a powerful analysis platform for the analysis of MSI data with ease of use and access together with high levels of reproducibility and transparency.


GigaScience ◽  
2019 ◽  
Vol 8 (12) ◽  
Author(s):  
Melanie Christine Föll ◽  
Lennart Moritz ◽  
Thomas Wollmann ◽  
Maren Nicole Stillger ◽  
Niklas Vockert ◽  
...  

Abstract Background Mass spectrometry imaging is increasingly used in biological and translational research because it has the ability to determine the spatial distribution of hundreds of analytes in a sample. Being at the interface of proteomics/metabolomics and imaging, the acquired datasets are large and complex and often analyzed with proprietary software or in-house scripts, which hinders reproducibility. Open source software solutions that enable reproducible data analysis often require programming skills and are therefore not accessible to many mass spectrometry imaging (MSI) researchers. Findings We have integrated 18 dedicated mass spectrometry imaging tools into the Galaxy framework to allow accessible, reproducible, and transparent data analysis. Our tools are based on Cardinal, MALDIquant, and scikit-image and enable all major MSI analysis steps such as quality control, visualization, preprocessing, statistical analysis, and image co-registration. Furthermore, we created hands-on training material for use cases in proteomics and metabolomics. To demonstrate the utility of our tools, we re-analyzed a publicly available N-linked glycan imaging dataset. By providing the entire analysis history online, we highlight how the Galaxy framework fosters transparent and reproducible research. Conclusion The Galaxy framework has emerged as a powerful analysis platform for the analysis of MSI data with ease of use and access, together with high levels of reproducibility and transparency.


2016 ◽  
Vol 22 (5) ◽  
pp. 229-233 ◽  
Author(s):  
Anna Bodzon-Kulakowska ◽  
Marta Marszalek-Grabska ◽  
Anna Antolak ◽  
Anna Drabik ◽  
Jolanta H. Kotlinska ◽  
...  

Metabolomics ◽  
2017 ◽  
Vol 13 (11) ◽  
Author(s):  
Nicholas J. Bond ◽  
Albert Koulman ◽  
Julian L. Griffin ◽  
Zoe Hall

2021 ◽  
Author(s):  
Melanie Christine Föll ◽  
Veronika Volkmann ◽  
Kathrin Enderle-Ammour ◽  
Konrad Wilhelm ◽  
Dan Guo ◽  
...  

Background: Mass spectrometry imaging (MSI) derives spatial molecular distribution maps directly from clinical tissue specimens. This allows for spatial characterization of molecular compositions of different tissue types and tumor subtypes, which bears great potential for assisting pathologists with diagnostic decisions or personalized treatments. Unfortunately, progress in translational MSI is often hindered by insufficient quality control and lack of reproducible data analysis. Raw data and analysis scripts are rarely publicly shared. Here, we demonstrate the application of the Galaxy MSI tool set for the reproducible analysis of an urothelial carcinoma dataset. Methods: Tryptic peptides were imaged in a cohort of 39 formalin-fixed, paraffin-embedded human urothelial cancer tissue cores with a MALDI-TOF/TOF device. The complete data analysis was performed in a fully transparent and reproducible manner on the European Galaxy Server. Annotations of tumor and stroma were performed by a pathologist and transferred to the MSI data to allow for supervised classifications of tumor vs. stroma tissue areas as well as for muscle-infiltrating and non-muscle invasive urothelial carcinomas. For putative peptide identifications, m/z features were matched to the MSiMass list. Results: Rigorous quality control in combination with careful pre-processing enabled reduction of m/z shifts and intensity batch effects. High classification accuracy was found for both, tumor vs. stroma and muscle-infiltrating vs. non-muscle invasive tumors. Some of the most discriminative m/z features for each condition could be assigned a putative identity: Stromal tissue was characterized by collagen type I peptides and tumor tissue by histone and heat shock protein beta-1 peptides. Intermediate filaments such as cytokeratins and vimentin were discriminative between the tumors with different muscle-infiltration status. To make the study fully reproducible and to advocate the criteria of FAIR (findability, accessibility, interoperability, and reusability) research data, we share the raw data, spectra annotations as well as all Galaxy histories and workflows. Data are available via ProteomeXchange with identifier PXD026459 and Galaxy results via https://github.com/foellmelanie/Bladder_MSI_Manuscript_Galaxy_links. Conclusion: Here, we show that translational MSI data analysis in a fully transparent and reproducible manner is possible and we would like to encourage the community to join our efforts.


Sign in / Sign up

Export Citation Format

Share Document