scholarly journals Correction to: The Mostela: an adjusted camera trapping device as a promising non-invasive tool to study and monitor small mustelids

2021 ◽  
Author(s):  
Jeroen Mos ◽  
Tim Ragnvald Hofmeester
2020 ◽  
Vol 65 (4) ◽  
pp. 843-853
Author(s):  
Jeroen Mos ◽  
Tim Ragnvald Hofmeester

Abstract In spite of their potential important role in shaping small mammal population dynamics, weasel (Mustela nivalis) and stoat (Mustela erminea) are understudied due to the difficulty of detecting these species. Furthermore, their conservation status in many countries is unknown due to lack of monitoring techniques. There is thus an important need for a method to detect these small mustelids. In this study, we tested the efficiency of a recently developed camera trapping device, the Mostela, as a new technique to detect mustelids in a study area near Dieren, the Netherlands. We placed Mostelas in linear landscape features, and other microhabitats thought to be frequently visited by weasels, from March to October 2017 and February to October 2018. We tested for yearly and monthly differences in site use and detectability, as well as the effect of entrance tube size, using an occupancy modelling framework. We found large seasonal differences in site use and detectability of weasels with the highest site use in June to October and highest detection probability in August and September. Detection probability was approximately two times higher for Mostelas with a 10-cm entrance tube compared with 8-cm. Furthermore, we were able to estimate activity patterns based on the time of detection, identify the sex in most detections (69.5%), and distinguish several individuals. Concluding, the Mostela seems promising as a non-invasive monitoring tool to study the occurrence and ecology of small mustelids. Further development of individual recognition from images would enable using the Mostela for density estimates applying capture-recapture models.


2011 ◽  
Vol 58 (1) ◽  
pp. 47-58 ◽  
Author(s):  
Marco Galaverni ◽  
Davide Palumbo ◽  
Elena Fabbri ◽  
Romolo Caniglia ◽  
Claudia Greco ◽  
...  

2017 ◽  
Vol 2017 (1) ◽  
pp. wlb.00355 ◽  
Author(s):  
Antonio Canu ◽  
Luca Mattioli ◽  
Alberto Santini ◽  
Marco Apollonio ◽  
Massimo Scandura

2021 ◽  
pp. 79-104
Author(s):  
Francesco Rovero ◽  
Roland Kays

Camera traps use a motion sensor to capture images of passing animals, representing verifiable and non-invasive records of the presence of a given species at a specified place and time. These simple records provide fundamental data on biodiversity that have proven invaluable to conservation. Thanks to the improved (better, smaller, and less expensive) camera technology and the concurrent development of analytical approaches, camera trapping science has grown steadily in the last 15 years and advanced our knowledge of elusive and rare fauna across the planet. Here we review the use and potential of camera trapping in conservation science. We start with an introduction to the importance and challenges of studying reclusive wildlife and discuss the technical aspects of camera traps that make them so efficient and widely used for this purpose. We then review the variety of ways camera trapping has contributed to conservation, first presenting the wildlife metrics camera traps can document and then surveying how these have been applied to conservation through studies of habitat preference, distribution models, threat assessments, monitoring, and evaluations of conservation interventions. We also present case studies showing how camera trapping can effectively contribute to link ecological monitoring to conservation, including how data and images can be used to engage the public and policymakers with conservation issues, and how this work is now being scaled up through citizen science and networks of standardized data collection coupled with cyber-infrastructures for automatized analyses. We conclude by reviewing possible technological improvements of camera traps and how they would aid conservation in the future.


Author(s):  
H.W. Deckman ◽  
B.F. Flannery ◽  
J.H. Dunsmuir ◽  
K.D' Amico

We have developed a new X-ray microscope which produces complete three dimensional images of samples. The microscope operates by performing X-ray tomography with unprecedented resolution. Tomography is a non-invasive imaging technique that creates maps of the internal structure of samples from measurement of the attenuation of penetrating radiation. As conventionally practiced in medical Computed Tomography (CT), radiologists produce maps of bone and tissue structure in several planar sections that reveal features with 1mm resolution and 1% contrast. Microtomography extends the capability of CT in several ways. First, the resolution which approaches one micron, is one thousand times higher than that of the medical CT. Second, our approach acquires and analyses the data in a panoramic imaging format that directly produces three-dimensional maps in a series of contiguous stacked planes. Typical maps available today consist of three hundred planar sections each containing 512x512 pixels. Finally, and perhaps of most import scientifically, microtomography using a synchrotron X-ray source, allows us to generate maps of individual element.


2001 ◽  
Vol 120 (5) ◽  
pp. A266-A266
Author(s):  
R BUTLER ◽  
B ZACHARAKIS ◽  
D MOORE ◽  
K CRAWFORD ◽  
G DAVIDSON ◽  
...  

2001 ◽  
Vol 120 (5) ◽  
pp. A491-A491 ◽  
Author(s):  
A LEODOLTER ◽  
D VAIRA ◽  
F BAZZOLL ◽  
A HIRSCHL ◽  
F MEGRAUD ◽  
...  
Keyword(s):  

2020 ◽  
Vol 158 (6) ◽  
pp. S-1249
Author(s):  
Yuri Hanada ◽  
Juan Reyes Genere ◽  
Bryan Linn ◽  
Tiffany Mangels-Dick ◽  
Kenneth K. Wang

2007 ◽  
Vol 177 (4S) ◽  
pp. 430-430
Author(s):  
Ram Ganapathi ◽  
Troy R. Gianduzzo ◽  
Arul Mahadevan ◽  
Monish Aron ◽  
Lee E. Ponsky ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document