Monitoring wolves (Canis lupus) by non-invasive genetics and camera trapping: a small-scale pilot study

2011 ◽  
Vol 58 (1) ◽  
pp. 47-58 ◽  
Author(s):  
Marco Galaverni ◽  
Davide Palumbo ◽  
Elena Fabbri ◽  
Romolo Caniglia ◽  
Claudia Greco ◽  
...  
2015 ◽  
Vol 24 (2) ◽  
pp. 197-201 ◽  
Author(s):  
Ramesh P. Arasaradnam ◽  
Michael McFarlane ◽  
Emma Daulton ◽  
Erik Westenbrink ◽  
Nicola O’Connell ◽  
...  

Background & Aims: Non-Alcoholic Fatty Liver Disease (NAFLD) is the commonest cause of chronic liver disease in the western world. Current diagnostic methods including Fibroscan have limitations, thus there is a need for more robust non-invasive screening methods. The gut microbiome is altered in several gastrointestinal and hepatic disorders resulting in altered, unique gut fermentation patterns, detectable by analysis of volatile organic compounds (VOCs) in urine, breath and faeces. We performed a proof of principle pilot study to determine if progressive fatty liver disease produced an altered urinary VOC pattern; specifically NAFLD and Non-Alcoholic Steatohepatitis (NASH).Methods: 34 patients were recruited: 8 NASH cirrhotics (NASH-C); 7 non-cirrhotic NASH; 4 NAFLD and 15 controls. Urine was collected and stored frozen. For assay, the samples were defrosted and aliquoted into vials, which were heated to 40±0.1°C and the headspace analyzed by FAIMS (Field Asymmetric Ion Mobility Spectroscopy). A previously used data processing pipeline employing a Random Forrest classification algorithm and using a 10 fold cross validation method was applied.Results: Urinary VOC results demonstrated sensitivity of 0.58 (0.33 - 0.88), but specificity of 0.93 (0.68 - 1.00) and an Area Under Curve (AUC) 0.73 (0.55 -0.90) to distinguish between liver disease and controls. However, NASH/NASH-C was separated from the NAFLD/controls with a sensitivity of 0.73 (0.45 - 0.92), specificity of 0.79 (0.54 - 0.94) and AUC of 0.79 (0.64 - 0.95), respectively.Conclusions: This pilot study suggests that urinary VOCs detection may offer the potential for early non-invasive characterisation of liver disease using 'smell prints' to distinguish between NASH and NAFLD.


Heritage ◽  
2021 ◽  
Vol 4 (3) ◽  
pp. 1165-1181
Author(s):  
Flavia Fiorillo ◽  
Lucia Burgio ◽  
Christine Slottved Kimbriel ◽  
Paola Ricciardi

This study presents the results of the technical investigation carried out on several English portrait miniatures painted in the 16th and 17th century by Nicholas Hilliard and Isaac Oliver, two of the most famous limners working at the Tudor and Stuart courts. The 23 objects chosen for the analysis, spanning almost the entire career of the two artists, belong to the collections of the Victoria and Albert Museum (London) and the Fitzwilliam Museum (Cambridge). A non-invasive scientific methodology, comprising of stereo and optical microscopies, Raman microscopy, and X-ray fluorescence spectroscopy, was required for the investigation of these small-scale and fragile objects. The palettes and working techniques of the two artists were characterised, focusing in particular on the examination of flesh tones, mouths, and eyes. These findings were also compared to the information written in the treatises on miniature painting circulating during the artists’ lifetime. By identifying the materials and techniques most widely employed by the two artists, this study provides information about similarities and differences in their working methods, which can help to understand their artistic practice as well as contribute to matters of attribution.


2005 ◽  
Vol 338 (3) ◽  
pp. 243-251 ◽  
Author(s):  
Audrey Smargiassi ◽  
Mary Baldwin ◽  
Charles Pilger ◽  
Rose Dugandzic ◽  
Michael Brauer

2008 ◽  
Vol 14 (5) ◽  
pp. 231-235 ◽  
Author(s):  
Georgina Corte Franco ◽  
Floriane Gallay ◽  
Marc Berenguer ◽  
Christine Mourrain ◽  
Pascal Couturier

PLoS ONE ◽  
2017 ◽  
Vol 12 (1) ◽  
pp. e0170668 ◽  
Author(s):  
Jully Gogoi-Tiwari ◽  
Vincent Williams ◽  
Charlene Babra Waryah ◽  
Paul Costantino ◽  
Hani Al-Salami ◽  
...  

Author(s):  
Mira Schmalenberg ◽  
Lena K. Weick ◽  
Norbert Kockmann

AbstractNucleation in continuously operated capillary coiled cooling crystallizers is experimentally investigated under the influence of ultrasound. It was found that there is no sharp boundary but rather a transition zone for nucleation under sonication. For this purpose, a tube with an inner diameter of 1.6 mm and a length of 6 m was winded in a coiled flow inverter (CFI) design and immersed into a cooled ultrasonic bath (37 kHz). The CFI design was chosen for improved radial mixing and narrow residence time distribution, which is also investigated. Amino acid l-alanine dissolved in deionized water is employed in a supersaturation range of 1.10 to 1.46 under quiet and sonicated conditions. Nucleation is non-invasive detected using a flow cell equipped with a microscope and camera. Graphical abstract Since the interest and demand for small-scale, continuous crystallization increases, seed crystals were generated in a coiled tube via sonication and optically investigated and characterized. No distinct threshold for nucleation could be determined in a wide range of supersaturations of l-alanine in water


2021 ◽  
Author(s):  
Natalia Browarska ◽  
Jaroslaw Zygarlicki ◽  
Mariusz Pelc ◽  
Michal Niemczynowicz ◽  
Malgorzata Zygarlicka ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document