Microfluidic-based effective monitoring of bloods by measuring RBC aggregation and blood viscosity under stepwise varying shear rates

2020 ◽  
Vol 32 (1) ◽  
pp. 15-27 ◽  
Author(s):  
Yang Jun Kang
2020 ◽  
Vol 21 (22) ◽  
pp. 8531
Author(s):  
Mélanie Robert ◽  
Emeric Stauffer ◽  
Elie Nader ◽  
Sarah Skinner ◽  
Camille Boisson ◽  
...  

Blood rheology is a key determinant of tissue perfusion at rest and during exercise. The present study investigated the effects of race distance on hematological, blood rheological, and red blood cell (RBC) senescence parameters. Eleven runners participated in the Martigny–Combes à Chamonix 40 km race (MCC, elevation gain: 2300 m) and 12 others in the Ultra-Trail du Mont Blanc (UTMB, 171 km, elevation gain: 10,000 m). Blood samples were collected before and after the races. After the UTMB, the percentage of RBC phosphatidylserine (PS) exposure was not affected while RBC CD235a levels decreased and RBC-derived microparticles increased. In contrast, after the MCC, RBC PS exposure increased, while RBC CD235a and RBC-derived microparticles levels were not affected. The free hemoglobin and hemolysis rate did not change during the races. RBC aggregation and blood viscosity at moderate shear rates increased after the MCC. RBC deformability, blood viscosity at a high shear rate, and hematocrit decreased after the UTMB but not after the MCC. Our results indicate that blood rheology behavior is different between a 40 km and a 171 km mountain race. The low blood viscosity after the ultra-marathon might facilitate blood flow to the muscles and optimize aerobic performance.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 1259-1259
Author(s):  
Jon Detterich ◽  
Tamas Alexy ◽  
Rosalinda B Wenby ◽  
John C Wood ◽  
Thomas D. Coates ◽  
...  

Abstract Abstract 1259 The ability for hemoglobin S to polymerize causes increased viscosity, decreased RBC deformability and increased RBC aggregation. Chronic transfusion therapy (CTT) in patients with sickle cell disease (SCD) decreases the percentage of hemoglobin S in the bloodstream. The hematocrit to viscosity ratio (HVR) has been used to estimate red cell oxygen transport effectiveness, a property of blood flow. There are undeniable benefits from CTT, however, there are patients on CTT who still suffer from acute crises. Acute hemorheologic changes after transfusion might contribute to these episodes. We hypothesize that viscosity and aggregation will increase post transfusion. Furthermore, we believe that these changes will result in lower oxygen transport effectiveness as measured by HVR. To test this hypothesis we enrolled 26 patients on chronic transfusion therapy in a prospective study to evaluate blood viscosity and aggregation changes with transfusion. We measured both oxygenated and deoxygenated whole blood viscosity at shear rates from 1s−1 to 1000s−1 and RBC aggregation at native hematocrit using a Rheolog viscometer (Rheologics Co). We also obtained pre and post transfusion blood counts, chemistry panels and markers of inflammation and hemolysis. 14 females and 12 males were enrolled with one patient who was excluded due to incomplete data. The ages and reasons for starting transfusion were similar for male and female patients. As expected, transfusion resulted in significant increases of hemoglobin and hematocrit with a concomitant decrease of percent hemoglobin S and reticulocyte count. There was a trend toward decreased platelet count. Male patients had a significantly higher percent hemoglobin S, reticulocyte count, plasma free hemoglobin and platelet count compared to females. Viscosity increased significantly across all shear rates with transfusion and with deoxygenation. There was no sex difference in viscosity. Deoxygenation and transfusion increased the aggregation index. Change in viscosity positively correlated with increased hematocrit and aggregation index. There was no correlation of viscosity change with change in hemoglobin S, markers of inflammation or hemolysis. Deoxygenation lowered HVR at all shear rates. HVR was significantly lower post transfusion at low shear rates of 1s−1, 2s−1 and 5s−1 (Figure 1). At mid to high shear rates there was no difference in HVR, although as the shear rate increased, the HVR curves crossed with apparently increasing improvement in HVR post transfusion at the highest shear rates. The significant decrease in HVR at low shear correlated with increased aggregation index but not increased hematocrit. In this population of patients on CTT, blood viscosity and RBC aggregation increased post transfusion, thus predisposing them to impaired perfusion in low flow vascular beds. The decrease in HVR at low shear rates correlated with RBC aggregation, providing further evidence for post-transfusion risk of impaired perfusion. These results support our hypothesis and indicate potential adverse effects of transfusion on microvascular blood flow.Figure 1Figure 1. Disclosures: Wood: Novartis: Research Funding; Ferrokin Biosciences: Consultancy; Cooleys Anemia Foundation: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding.


2021 ◽  
Vol 11 (16) ◽  
pp. 7260
Author(s):  
Yang Jun Kang

Determination of blood viscosity requires consistent measurement of blood flow rates, which leads to measurement errors and presents several issues when there are continuous changes in hematocrit changes. Instead of blood viscosity, a coflowing channel as a pressure sensor is adopted to quantify the dynamic flow of blood. Information on blood (i.e., hematocrit, flow rate, and viscosity) is not provided in advance. Using a discrete circuit model for the coflowing streams, the analytical expressions for four properties (i.e., pressure, shear stress, and two types of work) are then derived to quantify the flow of the test fluid. The analytical expressions are validated through numerical simulations. To demonstrate the method, the four properties are obtained using the present method by varying the flow patterns (i.e., constant flow rate or sinusoidal flow rate) as well as test fluids (i.e., glycerin solutions and blood). Thereafter, the present method is applied to quantify the dynamic flows of RBC aggregation-enhanced blood with a peristaltic pump, where any information regarding the blood is not specific. The experimental results indicate that the present method can quantify dynamic blood flow consistently, where hematocrit changes continuously over time.


Metabolism ◽  
2005 ◽  
Vol 54 (6) ◽  
pp. 764-768 ◽  
Author(s):  
Arnold Slyper ◽  
Anh Le ◽  
Jason Jurva ◽  
David Gutterman

Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 2716-2716
Author(s):  
Vivien A. Sheehan ◽  
Sheryl Nelson ◽  
Caroline Yappan ◽  
Bogdan R. Dinu ◽  
Danielle Guffey ◽  
...  

Abstract Background: Sickle cell disease (SCD) patients have altered blood rheology due to erythrocyte abnormalities, including increased aggregation and reduced deformability, which together affect microcirculatory blood flow and tissue perfusion. At equal hematocrit, sickle cell blood viscosity is increased compared to normal individuals. The hematocrit to viscosity ratio (HVR) is a measure of red blood cell (RBC) oxygen carrying capacity, and is reduced in SCD with clinical consequences related to altered blood flow and reduced tissue oxygenation. Erythrocyte transfusions reduce HVR at low shear rates that mimic venous circulation, and do not change HVR at high shear rates that mimic arterial blood flow. Hydroxyurea is a safe and effective therapy for SCD; however, its effects on sickle cell rheology and HVR have not been fully investigated. Evaluating the effects of hydroxyurea on viscosity is especially critical, before its use is extended widely to patients with cerebrovascular disease or genotypes with higher hematocrit and higher viscosity such as Hemoglobin SC (HbSC). Methods: To determine the effects of hydroxyurea on viscosity and HVR, we designed a prospective study to measure whole blood viscosity at 45 s-1 (low shear) and 225 s-1(high shear) rates in pediatric patients with SCD using a Brookfield cone and plate viscometer under oxygenated conditions. Venous blood samples (1-3mL) were collected in EDTA and analyzed no more than 4 hours after phlebotomy; samples were run in duplicate by persons blinded to the patient’s sickle genotype and treatment status. Laboratory values were obtained using an ADVIA hematology analyzer. Samples were analyzed from three non-overlapping cohorts of patients with SCD and HbAA individuals for comparison: untreated HbSS patients (n= 43), HbSS patients treated with hydroxyurea at maximum tolerated dose (n=98), untreated HbSC patients (n=53) and HbAA patients (n=19). Laboratory parameters that differed significantly among the SCD groups were analyzed by simple linear regression. Results: Patient characteristics and viscosity measurements are shown in the Table. Within the SCD population, the viscosity was lowest among the untreated HbSS patients, presumably due to their low hematocrit, while viscosity was higher in HbSS patients on hydroxyurea and HbSC patients. When the HVR was calculated for each group, no significant difference was identified between untreated HbSS and untreated HbSC patients. However, hydroxyurea treatment significantly increased HVR at both 45s-1 and 225 s-1 (p<0.001), indicating that the slightly increased viscosity in this cohort was more than compensated by a higher hematocrit. Correlations were tested for hemoglobin (Hb), mean corpuscular volume (MCV), white blood cell count (WBC), absolute neutrophil count (ANC), absolute reticulocyte count (ARC), % fetal hemoglobin (HbF), and average red cell density in g/dL with HVR, at both shear rates. The hydroxyurea-associated HVR increase at both shear rates was independent of %HbF or MCV, but the increased HVR at 225 s-1was associated with lower WBC (p<0.001), lower ANC (p=0.002), and lower red cell density (p=.009). Conclusions: We provide prospective data on whole blood viscosity measurements in a large cohort of children with SCD. Hydroxyurea increases the hematocrit in HbSS patients more than the viscosity, and thus improves HVR. These findings imply that hydroxyurea improves RBC oxygen transport at both high and low shear rates, which should confer clinical benefits, and these effects are independent of HbF induction. Concerns about hydroxyurea increasing whole blood viscosity and reducing tissue oxygenation in children with cerebrovascular disease or HbSC patients may not be warranted, if the same beneficial HVR effects are achieved. Abstract 2717. Table 1. Patient characteristics. Viscosity was typically measured in duplicate and averaged for each patient. HVR at 45 s-1 and 225s-1 was calculated as hematocrit/viscosity. Results are presented as mean ± 2SD. HbAAn=19 HbSS, untreatedn=43 HbSS, on Hydroxyurean=98 HbSCn=53 Age (years) 15.4 ± 3.8 10.4 ± 5.1 10.7 ± 3.4 10.5 ± 4.3 Hemoglobin (gm/dL) 13.5 ± 1.7 8.5 ± 1.0 9.9 ± 1.4 11.0 ± 1.2 Hematocrit (%) 40.9 ± 5.3 25.5 ± 3.1 28.4 ± 3.7 31.3 ± 3.2 Viscosity (cP) at 45s-1 5.3 ± 0.9 4.6 ± 1.2 4.3 ± 0.9 5.5 ±0.9 HVR at 45s-1 7.5 ± 0.9 5.8 ± 1.1 6.75 ± 1.0 5.77 ± 0.7 Viscosity (cP) at 225s-1 3.8 ± 0.5 3.3 ± 0.5 3.4 ± 0.5 4.1 ± 0.5 HVR at 225s-1 10.3 ± 0.7 7.7 ± 0.8 8.53 ± 0.8 7.72 ± 0.6 Disclosures Off Label Use: Hydroxyurea is not FDA approved for use in pediatric sickle cell patients.


The Analyst ◽  
2016 ◽  
Vol 141 (24) ◽  
pp. 6583-6597 ◽  
Author(s):  
Yang Jun Kang

A new measurement method is proposed to quantify blood viscosity, blood viscoelasticity, and RBC aggregation, in a continuous and simultaneous fashion.


2021 ◽  
Vol 15 (3) ◽  
pp. 181-190
Author(s):  
Elif H Ozcan Cetin ◽  
Mehmet S Cetin ◽  
Mustafa B Ozbay ◽  
Hasan C Könte ◽  
Nezaket M Yaman ◽  
...  

Aim: We aimed to assess the association of whole blood with thromboembolic milieu in significant mitral stenosis patients. Methodology & results: We included 122 patients and classified patients into two groups as having thrombogenic milieu, thrombogenic milieu (+), otherwise patients without thrombogenic milieu, thrombogenic milieu (-). Whole blood viscosity (WBV) in both shear rates were higher in thrombogenic milieu (+) group comparing with thrombogenic milieu (-). WBV at high shear rate and WBV at low shear rate parameters were moderately correlated with grade of spontaneous echo contrast. Adjusted with other parameters, WBV parameters at both shear rates were associated with presence of thrombogenic milieu. Discussion & conclusion: We found that extrapolated WBV at both shear rates was significantly associated with the thrombogenic milieu in mitral stenosis. This easily available parameter may provide additional perspective about thrombogenic diathesis.


2000 ◽  
Vol 279 (4) ◽  
pp. H1460-H1471 ◽  
Author(s):  
Mark J. Pearson ◽  
Herbert H. Lipowsky

The role of erythrocyte (red blood cell; RBC) aggregation in affecting leukocyte (white blood cell; WBC) margination in postcapillary venules of the mesentery (rat) was explored by direct intravital microscopy. Optical techniques were refined and applied to relate the light-scattering properties of RBCs to obtain a quantitative index of aggregate size ( G), which, under idealized conditions, represents the number of RBCs per aggregate. WBC margination, defined as the radial migration of WBCs to the venular wall and their subsequent rolling along the endothelium, was measured as the percentage of the potentially maximal WBC volumetric flux within the microvessel lumen ( F WBC ∗). In normal blood, F WBC ∗ increased exponentially fourfold, and G increased from 1 to 1.15 as wall shear rates (γ˙) were reduced from a steady-state value of ∼600 to <100 s−1 by proximal occlusion with a blunt microprobe. Enhancement of aggregation by infusion (iv) of dextran 500 (428 kDa), to attain a systemic concentration of 3 g/100 ml, resulted in a four- and sevenfold increase in G and F WBC ∗, respectively, as γ˙was reduced below 100 s−1. Inhibition of RBC aggregation by infusion of dextran 40 (37.5 kDa) caused F WBC ∗ to fall to one-half of its steady-state level for γ˙ < 100 s−1. Thus it appears that the well-known increase of WBC margination with reductions in γ˙ is strongly dependent on the occurrence of RBC aggregation. Increasing the extent of RBC aggregation during reductions in γ˙ also increased the firm adhesion of WBCs to the endothelium because of an enhanced probability of contact between leukocytes and the postcapillary venular wall.


1977 ◽  
Vol 38 (03) ◽  
pp. 0660-0667 ◽  
Author(s):  
P. A Dupont ◽  
J. A Sirs

SummaryMeasurements have been made of plasma fibrinogen concentration, erythrocyte flexibility and blood viscosity at shear rates from 5.75 to 230 sec−1 during and following surgery. In the post-operative period the plasma fibrinogen level in the patient rose to over 1,000 mg/dl and because there were subsequent complications, only returned to normal after 4 weeks. There was an associated change of erythrocyte flexibility, with a correlation coefficient of 0.98. The blood viscosity also varied with the plasma fibrinogen level, the effect being more pronounced at low shear rates. The internal viscosity of the red blood cell, calculated from the plasma viscosity and whole blood viscosity at 230 sec−1, decreases with increasing plasma fibrinogen concentration, in agreement with the direct measurements made of erythrocyte flexibility. It is proposed that at high shear rates an increase in plasma viscosity due to an elevation of fibrinogen concentration, is offset by a decrease in the rigidity of the erythrocytes, and these 2 effects counter-balance.


Sign in / Sign up

Export Citation Format

Share Document