Optimal H-infinity Integral Dynamic State Feedback Model Reference Controller Design for Nonlinear Systems

Author(s):  
Ali H. Mhmood ◽  
Hazem I. Ali
2014 ◽  
Vol 71 (1) ◽  
Author(s):  
Hazem I. Ali

In this paper the design of robust stabilizing state feedback controller for inverted pendulum system is presented. The Ant Colony Optimization (ACO) method is used to tune the state feedback gains subject to different proposed cost functions comprise of H-infinity constraints and time domain specifications. The steady state and dynamic characteristics of the proposed controller are investigated by simulations and experiments. The results show the effectiveness of the proposed controller which offers a satisfactory robustness and a desirable time response specifications. Finally, the robustness of the controller is tested in the presence of system uncertainties and disturbance.


Author(s):  
Hiroshi Ohtake ◽  
◽  
Kazuo Tanaka

Fuzzy model-based control mainly deals with dynamical systems which affinely depend on control inputs. In this paper, dynamical systems which is permitted to have nonlinearity not only in the states, but also in the inputs is considered. Input nonlinearity makes a nonlinear system complicated and makes the number of fuzzy model rules increase. Thus, switching fuzzy control approach is employed. Firstly, the switching fuzzy model construction with arbitrary linear dividing planes, which is an extension of the ordinary switching fuzzy model construction method with dividing planes corresponding to quadrants, is introduced. Secondly, by applying the switching fuzzy model construction method to the dynamical system with input nonlinearity, the switching fuzzy model with membership functions which depend on control inputs is constructed. Finally, by utilizing the dynamic state feedback control approach, we show that membership functions which depend on control inputs can be calculated. Moreover, by employing augmented system approach, the switching fuzzy dynamic state feedback controller design conditions based on the switching Lyapunov function are derived in terms of linear matrix inequalities. A design example illustrates the utility of this approach.


2014 ◽  
Vol 2014 ◽  
pp. 1-9
Author(s):  
Zhiguo Yan

This paper deals with the problem of resilient finite-time control for a class of stochastic nonlinear systems. The notion of finite-time annular domain stability of stochastic nonlinear systems is first introduced. Then, some sufficient conditions are given for the existence of resilient state feedback finite-time annular domain stabilizing controller, which are expressed in terms of matrix inequalities. A double-parameter searching algorithm is proposed to solve these obtained matrix inequalities. Finally, an example is given to illustrate the effectiveness of the developed method.


Sign in / Sign up

Export Citation Format

Share Document