scholarly journals Rapid particle size measurements used as a proxy to control instant whole milk powder dispersibility

2016 ◽  
Vol 96 (6) ◽  
pp. 777-786 ◽  
Author(s):  
I. Boiarkina ◽  
N. Depree ◽  
W. Yu ◽  
D. I. Wilson ◽  
B.R. Young
Foods ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 1024 ◽  
Author(s):  
Haohan Ding ◽  
Bing Li ◽  
Irina Boiarkina ◽  
David I. Wilson ◽  
Wei Yu ◽  
...  

The chemical and physical properties of instant whole milk powder (IWMP), such as morphology, protein content, and particle size, can affect its functionality and performance. Bulk density, which directly determines the packing cost and transportation cost of milk powder, is one of the most important functional properties of IWMP, and it is mainly affected by physical properties, e.g., morphology and particle size. This work quantified the relationship between morphology and bulk density of IWMP and developed a predictive model of bulk density for IWMP. To obtain milk powder samples with different particle size fractions, IWMP samples of four different brands were sieved into three different particle size range groups, before using the simplex-centroid design (SCD) method to remix the milk powder samples. The bulk densities of these remixed milk powder samples were then measured by tap testing, and the particles’ shape factors were extracted by light microscopy and image processing. The number of variables was decreased by principal component analysis and partial least squares models and artificial neural network models were built to predict the bulk density of IWMP. It was found that different brands of IWMP have different morphology, and the bulk density trends versus the shape factor changes were similar for the different particle size range groups. Finally, prediction models for bulk density were developed by using the shape factors and particle size range fractions of the IWMP samples. The good results of these models proved that predicting the bulk density of IWMP by using shape factors and particle size range fractions is achievable and could be used as a model for online model-based process monitoring.


1998 ◽  
Vol 97 (3) ◽  
pp. 191-199 ◽  
Author(s):  
Paul R. Rennie ◽  
X.D. Chen ◽  
Antony R. Mackereth

1945 ◽  
Vol 23f (6) ◽  
pp. 327-333 ◽  
Author(s):  
Jesse A. Pearce

Sorption of carbon dioxide by milk powder in a closed system at 35 °C. and at approximately 74 cm. of mercury was observed to be greater than 0.4 cc. per gm. after 150 hr., while only 0.012 cc. of nitrogen was absorbed per gm. after 70 hr. The initial sorption of carbon dioxide varied with time according to the equation:[Formula: see text]where s is 100 times the amount sorbed in cc. per gm. at any time, t (min.), and k and m are constants peculiar to the system under investigation. The logarithmic form of this equation was used. Powders with 26, 28, and 30% fat did not differ in behaviour, but sorption curves for powders with only 1% fat had lower [Formula: see text] values and lower [Formula: see text] values than the curves for the high fat levels. Powders with 1% fat sorbed carbon dioxide in an identical manner when exposed to either 100% carbon dioxide or a mixture of 20% carbon dioxide and 80% nitrogen. For whole milk powder, dilution to 80% nitrogen content was effective in reducing the initial sorption rate of carbon dioxide. Great variation was observed in the sorption behaviour of powders from different plants and in powders produced at different time intervals in the same plant. Temperature differences within the range 25° to 40 °C. had no effect on sorption. Palatability and [Formula: see text] correlated to the extent of r =.61.


Author(s):  
H.J. Clarke ◽  
C. Griffin ◽  
D. Hennessy ◽  
T.F. O'Callaghan ◽  
M.G. O'Sullivan ◽  
...  

2003 ◽  
Vol 68 (1) ◽  
pp. 210-216 ◽  
Author(s):  
A.B. Koc ◽  
P.H. Heinemann ◽  
G.R. Ziegler

2008 ◽  
Vol 34 (5) ◽  
pp. 275-281
Author(s):  
Yoshiki MURAMATSU ◽  
Eiichiro SAKAGUCHI ◽  
Toshio NAGASHIMA ◽  
Akio TAGAWA

2020 ◽  
Vol 276 ◽  
pp. 109841 ◽  
Author(s):  
Haohan Ding ◽  
Wei Yu ◽  
Irina Boiarkina ◽  
Nick Depree ◽  
Brent R. Young

Sign in / Sign up

Export Citation Format

Share Document