scholarly journals Impacts of climate change on the gross primary production of Italian forests

2019 ◽  
Vol 76 (2) ◽  
Author(s):  
Luca Fibbi ◽  
Marco Moriondo ◽  
Marta Chiesi ◽  
Marco Bindi ◽  
Fabio Maselli
2020 ◽  
Author(s):  
Emma Izquierdo-Verdiguier ◽  
Raúl Zurita-Milla ◽  
Álvaro Moreno-Martinez ◽  
Gustau Camps-Valls ◽  
Anja Klisch ◽  
...  

<p>Phenological information can be obtained from different sources of data. For instance, from remote sensing data or products and from models driven by weather variables. The former typically allows analyzing land surface phenology whereas the latter provide plant phenological information. Analyzing relationships between both sources of data allows us to understand the impact of climate change on vegetation over space and time. For example, the onset of spring is advanced or delayed by changes in the climate. These alterations affect plant productivity and animal migrations.</p><p>Spring onset monitoring is supported by the Extended Spring Index (SI-x), which are a suite of regression-based models for key indicator plant species. These models (Schwartz et al. in 2013) are based on daily maximum and minimum temperature from the first day of the year (January 1<sup>st</sup>). The primary products of these models are the timing of first leaf and first bloom, but they also provide derivative products such as the timing of last freeze day and the risk of frost damage day (damage index) for each year. This information helps to understand if vegetation could have suffered from environmental stressors such as droughts or a late frost events. The effects of environmental stressors in vegetation could be captured by the false spring index, which relates the first leaf day and the last freeze day. Moreover, this information could be used to understand plant productivity as well as to evaluate the economic impact of climate change.</p><p>Previous works studied the relationship between remote sensing and plant level products by means of spatial-temporal analysis between Gross Primary Production (GPP) and a spring onset index. However, they did not consider the possible impact of false spring effect in these relationships. Here, we present a spatial-temporal analysis between GPP and the damage index to better understand the effect of false springs (in annual gross photosynthesis data). The analysis is done for the period 2000 to 2015 over the contiguous US and at spatial resolution of 1 km. We used the MODIS annual sum of GPP and the damage and false spring indices derived from the SI-x models.</p>


2021 ◽  
Author(s):  
Junbin Zhao ◽  
Holger Lange ◽  
Helge Meissner

<p>Forests have climate change mitigation potential since they sequester carbon. However, their carbon sink strength might depend on management. As a result of the balance between CO<sub>2</sub> uptake and emission, forest net ecosystem exchange (NEE) reaches optimal values (maximum sink strength) at young stand ages, followed by a gradual NEE decline over many years. Traditionally, this peak of NEE is believed to be concurrent with the peak of primary production (e.g., gross primary production, GPP); however, in theory, this concurrence may potentially vary depending on tree species, site conditions and the patterns of ecosystem respiration (R<sub>eco</sub>). In this study, we used eddy-covariance (EC)-based CO<sub>2</sub> flux measurements from 8 forest sites that are dominated by Norway spruce (Picea abies L.) and built machine learning models to find the optimal age of ecosystem productivity and that of CO<sub>2</sub> sequestration. We found that the net CO<sub>2</sub> uptake of Norway spruce forests peaked at ages of 30-40 yrs. Surprisingly, this NEE peak did not overlap with the peak of GPP, which appeared later at ages of 60-90 yrs. The mismatch between NEE and GPP was a result of the R<sub>eco</sub> increase that lagged behind the GPP increase associated with the tree growth at early age. Moreover, we also found that newly planted Norway spruce stands had a high probability (up to 90%) of being a C source in the first year, while, at an age as young as 5 yrs, they were likely to be a sink already. Further, using common climate change scenarios, our model results suggest that net CO<sub>2</sub> uptake of Norway spruce forests will increase under the future climate with young stands in the high latitude areas being more beneficial. Overall, the results suggest that forest management practices should consider NEE and forest productivity separately and harvests should be performed only after the optimal ages of both the CO<sub>2</sub> sequestration and productivity to gain full ecological and economic benefits.</p>


2012 ◽  
Vol 118 (2) ◽  
pp. 259-273 ◽  
Author(s):  
Zhen-Ming Ge ◽  
Seppo Kellomäki ◽  
Heli Peltola ◽  
Xiao Zhou ◽  
Hannu Väisänen ◽  
...  

2018 ◽  
Author(s):  
Karun Pandit ◽  
Hamid Dashti ◽  
Nancy F. Glenn ◽  
Alejandro N. Flores ◽  
Kaitlin C. Maguire ◽  
...  

Abstract. Gross primary production (GPP) is one of the most critical processes in the global carbon cycle, but is difficult to quantify in part because of its high spatiotemporal variability. Direct techniques to quantify GPP are lacking, thus, researchers rely on data inferred from eddy covariance (EC) towers and/or ecosystem dynamic models. The latter are useful to quantify GPP over time and space because of their efficiency over direct field measurements and applicability to broad spatial extents. However, such models have also been associated with internal uncertainties and complexities arising from distinct qualities of the ecosystem being analyzed. Widely distributed sagebrush-steppe ecosystems in western North America are threatened by anthropogenic disturbance, invasive species, climate change, and altered fire regimes. Although land managers have focused on different restoration techniques, the effects of these activities and their interactions with fire, climate change, and invasive species on ecosystem dynamics are poorly understood. In this study, we applied an ecosystem dynamic model, Ecosystem Demography (EDv2.2), to parameterize and predict GPP for sagebrush-steppe ecosystems in the Reynolds Creek Experimental Watershed (RCEW), located in the northern Great Basin. Our primary objective was to develop and parameterize a sagebrush (Artemisia spp.) shrubland Plant Functional Type (PFT) for use in the EDv2.2 model, which will support future studies to model estimates of GPP under different climate and management scenarios. To accomplish this, we employed a three-tiered approach. First, to parameterize the sagebrush PFT, we fitted allometric relationships for sagebrush using field-collected data, gathered information from existing sagebrush literature, and borrowed values from other PFTs in EDv2.2. Second, we identified the five most sensitive parameters out of thirteen that were found to be influential in GPP prediction based on previous studies. Third, we optimized the five parameters using an exhaustive search method to predict GPP, and performed validation using observations from two EC sites in the study area. Our modeled results were encouraging, with reasonable fidelity to observed values, although some negative biases (i.e., seasonal underestimates of GPP) were apparent. We expect that, with further refinement, the resulting sagebrush PFT will permit explicit scenario testing of potential anthropogenic modifications of GPP in sagebrush ecosystems, and will contribute to a better understanding of the role of sagebrush ecosystems in shaping global carbon cycles.


2014 ◽  
Vol 11 (15) ◽  
pp. 4271-4288 ◽  
Author(s):  
J. B. Fisher ◽  
M. Sikka ◽  
W. C. Oechel ◽  
D. N. Huntzinger ◽  
J. R. Melton ◽  
...  

Abstract. Climate change is leading to a disproportionately large warming in the high northern latitudes, but the magnitude and sign of the future carbon balance of the Arctic are highly uncertain. Using 40 terrestrial biosphere models for the Alaskan Arctic from four recent model intercomparison projects – NACP (North American Carbon Program) site and regional syntheses, TRENDY (Trends in net land atmosphere carbon exchanges), and WETCHIMP (Wetland and Wetland CH4 Inter-comparison of Models Project) – we provide a baseline of terrestrial carbon cycle uncertainty, defined as the multi-model standard deviation (σ) for each quantity that follows. Mean annual absolute uncertainty was largest for soil carbon (14.0 ± 9.2 kg C m−2), then gross primary production (GPP) (0.22 ± 0.50 kg C m−2 yr−1), ecosystem respiration (Re) (0.23 ± 0.38 kg C m−2 yr−1), net primary production (NPP) (0.14 ± 0.33 kg C m−2 yr−1), autotrophic respiration (Ra) (0.09 ± 0.20 kg C m−2 yr−1), heterotrophic respiration (Rh) (0.14 ± 0.20 kg C m−2 yr−1), net ecosystem exchange (NEE) (−0.01 ± 0.19 kg C m−2 yr−1), and CH4 flux (2.52 ± 4.02 g CH4 m−2 yr−1). There were no consistent spatial patterns in the larger Alaskan Arctic and boreal regional carbon stocks and fluxes, with some models showing NEE for Alaska as a strong carbon sink, others as a strong carbon source, while still others as carbon neutral. Finally, AmeriFlux data are used at two sites in the Alaskan Arctic to evaluate the regional patterns; observed seasonal NEE was captured within multi-model uncertainty. This assessment of carbon cycle uncertainties may be used as a baseline for the improvement of experimental and modeling activities, as well as a reference for future trajectories in carbon cycling with climate change in the Alaskan Arctic and larger boreal region.


2014 ◽  
Vol 11 (2) ◽  
pp. 2887-2932 ◽  
Author(s):  
J. B. Fisher ◽  
M. Sikka ◽  
W. C. Oechel ◽  
D. N. Huntzinger ◽  
J. R. Melton ◽  
...  

Abstract. Climate change is leading to a disproportionately large warming in the high northern latitudes, but the magnitude and sign of the future carbon balance of the Arctic are highly uncertain. Using 40 terrestrial biosphere models for Alaska, we provide a baseline of terrestrial carbon cycle structural and parametric uncertainty, defined as the multi-model standard deviation (σ) against the mean (x) for each quantity. Mean annual uncertainty (σ/x) was largest for net ecosystem exchange (NEE) (−0.01± 0.19 kg C m−2 yr−1), then net primary production (NPP) (0.14 ± 0.33 kg C m−2 yr−1), autotrophic respiration (Ra) (0.09 ± 0.20 kg C m−2 yr−1), gross primary production (GPP) (0.22 ± 0.50 kg C m−2 yr−1), ecosystem respiration (Re) (0.23 ± 0.38 kg C m−2 yr−1), CH4 flux (2.52 ± 4.02 g CH4 m−2 yr−1), heterotrophic respiration (Rh) (0.14 ± 0.20 kg C m−2 yr−1), and soil carbon (14.0± 9.2 kg C m−2). The spatial patterns in regional carbon stocks and fluxes varied widely with some models showing NEE for Alaska as a strong carbon sink, others as a strong carbon source, while still others as carbon neutral. Additionally, a feedback (i.e., sensitivity) analysis was conducted of 20th century NEE to CO2 fertilization (β) and climate (γ), which showed that uncertainty in γ was 2x larger than that of β, with neither indicating that the Alaskan Arctic is shifting towards a certain net carbon sink or source. Finally, AmeriFlux data are used at two sites in the Alaskan Arctic to evaluate the regional patterns; observed seasonal NEE was captured within multi-model uncertainty. This assessment of carbon cycle uncertainties may be used as a baseline for the improvement of experimental and modeling activities, as well as a reference for future trajectories in carbon cycling with climate change in the Alaskan Arctic.


2016 ◽  
Author(s):  
Svenja Bartsch ◽  
Bertrand Guenet ◽  
Christophe Boissard ◽  
Juliette Lathière ◽  
Jean-Yves Peterschmitt ◽  
...  

Abstract. Mediterranean ecosystems are significant carbon sinks but are also particularly sensitive to climate change but the carbon dynamic in such ecosystem is still not fully understood. An improved understanding of the drivers of the carbon fixation by plants is needed to better predict how such ecosystems will respond to climate change. Here, for the first time, a large dataset collected through the FLUXNET network is used to estimate how the gross primary production (GPP) of different Mediterranean ecosystems was affected by air temperature and precipitation between the years 1996 and 2013. We showed that annual precipitation was not a significant driver of annual GPP. Our results also indicated that seasonal variations of air temperature significantly affected seasonal variations of GPP but without major impact on inter annual variations. Inter-annual variations of GPP seemed largely controlled by the precipitation during early spring (March–April), making this period crucial for the future of Mediterranean ecosystems. Finally, we also observed that the sensitivity of GPP in Mediterranean ecosystems to climate drivers is not ecosystem type dependent.


Sign in / Sign up

Export Citation Format

Share Document