De novo modeling and structural characterization of IL9-IL9 receptor complex: a potential drug target for hematopoietic stem cell therapy

Author(s):  
Sakshi Singh ◽  
Navaneet Chaturvedi ◽  
Geeta Rai
Transfusion ◽  
2011 ◽  
Vol 52 (5) ◽  
pp. 1086-1091 ◽  
Author(s):  
Fermin M. Sánchez-Guijo ◽  
Olga López-Villar ◽  
Lucía López-Anglada ◽  
Eva M. Villarón ◽  
Sandra Muntión ◽  
...  

2011 ◽  
Vol 300 (5) ◽  
pp. G684-G696 ◽  
Author(s):  
R. C. Mifflin ◽  
I. V. Pinchuk ◽  
J. I. Saada ◽  
D. W. Powell

The subepithelial intestinal myofibroblast is an important cell orchestrating many diverse functions in the intestine and is involved in growth and repair, tumorigenesis, inflammation, and fibrosis. The myofibroblast is but one of several α-smooth muscle actin-positive (α-SMA+) mesenchymal cells present within the intestinal lamina propria, including vascular pericytes, bone marrow-derived stem cells (mesenchymal stem cells or hematopoietic stem cells), muscularis mucosae, and the lymphatic pericytes (colon) and organized smooth muscle (small intestine) associated with the lymphatic lacteals. These other mesenchymal cells perform many of the functions previously attributed to subepithelial myofibroblasts. This review discusses the definition of a myofibroblast and reconsiders whether the α-SMA+ subepithelial cells in the intestine are myofibroblasts or other types of mesenchymal cells, i.e., pericytes. Current information about specific, or not so specific, molecular markers of lamina propria mesenchymal cells is reviewed, as well as the origins of intestinal myofibroblasts and pericytes in the intestinal lamina propria and their replenishment after injury. Current concepts and research on stem cell therapy for intestinal inflammation are summarized. Information about the stem cell origin of intestinal stromal cells may inform future stem cell therapies to treat human inflammatory bowel disease (IBD).


2007 ◽  
Vol 39 (6) ◽  
pp. 465-473 ◽  
Author(s):  
Michael Y. Shapira ◽  
Ali Abdul Hai ◽  
Panagiotis Tsirigotis ◽  
Igor B. Resnick ◽  
Reuven Or ◽  
...  

Author(s):  
Nursuaidah Abdullah ◽  
Marjanu Hikmah Elias

Type 1 diabetes (T1D) is a deficiency in insulin production which is mainly due to loss of ?-cell pancreatic islets. Patients with T1D need to be given exogenous insulin regularly. While improvements in the delivery of insulin and glucose monitoring methods have been effective in improving patient safety, insulin therapy is not a cure and is often associated with complications and debilitating hypoglycaemic episodes. Meanwhile, pancreas or islet transplantation as a gold standard only promises temporary freedom from exogenous insulin and suffers from issues of its own. Stem cell therapy may provide a more permanent solution, given stem cells’ immunomodulatory characteristics and ability to self-renew and distinguish into specific cells. In this sense, the therapeutic potentials of stem cells are addressed in this study. These stem cells cover a wide range of treatments for T1D including embryonic stem cells, induced pluripotent stem cells, bone-marrow derived hematopoietic stem cells and multipotent mesenchymal stromal cells. The challenges faced by the current stem cell transplant in T1D treatment and Islamic viewpoints regarding ethics in stem cell research and therapy are also discussed. In conclusion, stem cell therapy offers a safe and efficient alternative treatment for T1D. However, besides the fatwa from Fatwa Committee of Selangor, the lack of Malaysian stem cells ethics should be further addressed.


Sign in / Sign up

Export Citation Format

Share Document