scholarly journals Autochthonous bioaugmentation to enhance phenanthrene degradation in soil microcosms under arid conditions

2014 ◽  
Vol 12 (7) ◽  
pp. 2317-2326 ◽  
Author(s):  
L. Madueño ◽  
H. M. Alvarez ◽  
I. S. Morelli
1995 ◽  
Vol 29 (6) ◽  
pp. 1615-1621 ◽  
Author(s):  
Claude-Henri. ChaIneau ◽  
Jean-Louis. Morel ◽  
Jean. Oudot

2020 ◽  
Vol 32 (1) ◽  
Author(s):  
Ali Mohamed Elyamine ◽  
Chengxiao Hu

Abstract Background Since the industrial revolution, the contamination of agricultural soils by polycyclic aromatic hydrocarbons (PAHs) has increasingly become of serious global environmental concern and poses a huge threat to human beings and natural ecosystems. Microbial degradation is a proved technology mostly used to depollute polycyclic aromatic hydrocarbon (PAH) in the environment. However, very limited information is available regarding the interaction of earthworms with rice straw on the soil microbial community and the degradation of phenanthrene. This study was performed to enlighten the rice straw and earthworms’ interaction on soil bacterial abundance and structure and phenanthrene removal. Results Result about functional gene information revealed that both rice straw and earthworm enhanced phenanthrene degradation. Subsequently, both Shannon diversity index (r2 = − 0.8807, p < 0.001) and bacterial 16S rRNA genes (r2 = − 0.7795, p < 0.001) negatively correlated with the remaining phenanthrene concentration in soil. The application of both rice straw and earthworms in soil had the lowest ratio of soil remaining phenanthrene concentration (0.16 ± 0.02), the highest Shannon diversity index (6.45 ± 0.2) and the highest bacterial 16S rRNA genes. This implied that both earthworms and rice straw might improve the phenanthrene metabolism by increasing soil bacteria diversity. The abundance of genera Pseudomonas, Luteimonas, Rhodanobacter, Sphingomonas, Gemmatimonas, Flavobacterium, and Leifsonia was significantly increased in the presence of both earthworms and rice straw and was found to negatively correlate with the remaining phenanthrene concentration in soil. Conclusion Based on these results, this study offers clear and strong evidences that the positive interaction between earthworms and rice straw could promote phenanthrene degradation in soil. These finding will improve our understanding on the importance of the natural resources forsaken and how they can interact with the soil macro- and microorganisms to change soil structure and enhance PAH degradation in soil.


Author(s):  
Ahmed M Abdel-Ghanya ◽  
Ibrahim M Al-Helal

Plastic nets are extensively used for shading purposes in arid regions such as in the Arabian Peninsula. Quantifying the convection exchange with shading net and understanding the mechanisms (free, mixed and forced) of convection are essential for analyzing energy exchange with shading nets. Unlike solar and thermal radiation, the convective energy, convective heat transfer coefficient and the nature of convection have never been theoretically estimated or experimentally measured for plastic nets under arid conditions. In this study, the convected heat exchanges with different plastic nets were quantified based on an energy balance applied to the nets under outdoor natural conditions. Therefore, each net was tacked onto a wooden frame, fixed horizontally at 1.5-m height over the floor. The downward and upward solar and thermal radiation fluxes were measured below and above each net on sunny days; also the wind speed over the net, and the net and air temperatures were measured, simultaneously. Nets with different porosities, colors and texture structures were used for the study. The short and long wave’s radiative properties of the nets were pre-determined in previous studies to be used. Re and Gr numbers were determined and used to characterize the convection mechanism over each net. The results showed that forced and mixed convection are the dominant modes existing over the nets during most of the day and night times. The nature of convection over nets depends mainly on the wind speed, net-air temperature difference and texture shape of the net rather than its color and its porosity.


2009 ◽  
Vol 17 (3) ◽  
pp. 483-494 ◽  
Author(s):  
Viktoria Feigl ◽  
Nikolett Uzinger ◽  
Katalin Gruiz

Sign in / Sign up

Export Citation Format

Share Document