Characterizing the convective heat exchange with plastic shading nets under natural arid conditions

Author(s):  
Ahmed M Abdel-Ghanya ◽  
Ibrahim M Al-Helal

Plastic nets are extensively used for shading purposes in arid regions such as in the Arabian Peninsula. Quantifying the convection exchange with shading net and understanding the mechanisms (free, mixed and forced) of convection are essential for analyzing energy exchange with shading nets. Unlike solar and thermal radiation, the convective energy, convective heat transfer coefficient and the nature of convection have never been theoretically estimated or experimentally measured for plastic nets under arid conditions. In this study, the convected heat exchanges with different plastic nets were quantified based on an energy balance applied to the nets under outdoor natural conditions. Therefore, each net was tacked onto a wooden frame, fixed horizontally at 1.5-m height over the floor. The downward and upward solar and thermal radiation fluxes were measured below and above each net on sunny days; also the wind speed over the net, and the net and air temperatures were measured, simultaneously. Nets with different porosities, colors and texture structures were used for the study. The short and long wave’s radiative properties of the nets were pre-determined in previous studies to be used. Re and Gr numbers were determined and used to characterize the convection mechanism over each net. The results showed that forced and mixed convection are the dominant modes existing over the nets during most of the day and night times. The nature of convection over nets depends mainly on the wind speed, net-air temperature difference and texture shape of the net rather than its color and its porosity.

2016 ◽  
Vol 138 (9) ◽  
Author(s):  
Ahmed M. Abdel-Ghany ◽  
Ibrahim M. Al-Helal ◽  
M. R. Shady

The perforated nature of nets makes it impossible to measure the thermal radiative properties (emittance, εn, transmittance, τn, and reflectance, ρn) correctly by using any measuring device under natural conditions. In this study, a theoretical model was developed and validated to predict εn, τn, and ρn precisely by solving the model equations simultaneously. The net was tacked onto a wooden frame; thermal radiation balance was applied below and above the net surfaces and above a black substrate underneath the frame. The downward and upward thermal radiation fluxes were measured below and above the net to be used as input parameters to the simulation. Nets with different porosities (ϕ) and colors were used for the study. The results showed that the estimated εn ranged from 0.41 to 0.82 and τn ranged from 0.16 to 0.55 for the nets tested, whereas the reflectances were very low (ρn≤0.08). The color and porosity together affect the properties of the net. Even though under equilibrium conditions of a net with the surrounding environment, the emittance of the net is equal to its absorptance. However, the absorbed thermal radiation by the net dose not equal to the emitted radiation and the difference is a convected heat.


1985 ◽  
Vol 6 ◽  
pp. 238-241 ◽  
Author(s):  
Takashi Yamanouchi ◽  
Sadao Kawaguchi

Effects of drifting snow are examined from measurements of radiation fluxes at Mizuho Station in the katabatic wind zone, Antarctica. A good correlation is found between the difference of downward longwave fluxes measured at two heights and wind speed used as an index of drifting snow. The wind increases the downward flux at a rate of 2 W m-2/m s-2 when wind speed is higher than 13 m/s. Drifting snow suppresses the net longwave cooling at the surface. Direct solar radiation is depleted greatly by the drifting snow; however, the global flux decreases only slightly, compensated by the large increase of the diffuse flux, at a rate of about 1% for each 1 m/s increase in wind speed. At Mizuho Station, the effect on longwave radiation prevails throughout the year. The relation between snow drift content and wind speed is obtained from shortwave optical depth measurements as a function of wind speed. A simple parameterization of radiative properties is given.


Energies ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 5474
Author(s):  
Torgrim Log

Hot flaring, even from quite high flare stacks, may result in significant heat radiation outside a facility to, e.g., public roads where random passersby may be exposed. The present study suggests a novel method for analyzing a typical flare heat radiation exposure and investigates skin burns that may be inflicted on an exposed person if a facility needs to depressurize in an emergency situation. A typical radiation field from an ignited natural gas vent was taken as the boundary condition, and these values were compared to radiation levels mentioned by the American Petroleum Institute (API 521), e.g., 1.58 kW/m2 and above. Due to facility perimeter fences along roads in larger industry areas, it was assumed that an exposed person may flee along a road rather than in the ideal direction away from the flare. It was assumed that naked skin, e.g., a bare shoulder or a bald head is exposed. The Pennes bioheat equation was numerically solved for the skin layers while the person escapes along the road. Sun radiation and convective heat exchange to the ambient air were included, and the subsequent skin injury was calculated based on the temperature development in the basal layer. Parameters affecting burn severity, such as heat radiation, solar radiation, and convective heat transfer coefficient, were analyzed. For small flares and ignited small cold vents, no skin burn would be expected for 1.58 kW/m2 or 3.16 kW/m2 maximum heat radiation at the skin surface. However, higher flare rates corresponding to, e.g., 4.0 kW/m2 maximum flare heat radiation to the skin, resulted both in higher basal layer temperatures and longer exposure time, thus increasing the damage integral significantly. It is demonstrated that the novel approach works well. In future studies, it may, e.g., be extended to cover escape through partly shielded escape routes.


2006 ◽  
Vol 45 (5) ◽  
pp. 787-790 ◽  
Author(s):  
Avraham Shitzer ◽  
Richard de Dear

Abstract An apparent error was detected in the calculation of windchill equivalent temperatures (WCETs) in the “new” chart and corresponding equation that were adopted in 2001 by the weather services in the United States and Canada. The problem is caused by significant discontinuities in WCETs at the assumed “calm” wind speed condition of 1.34 m s−1. As a result, published WCETs are not equal to, as they should be by definition, but are lower than air temperatures at the assumed calm wind speed condition. This inconsistency further propagates to higher wind speeds beyond the assumed calm condition. In this paper, a straightforward correction is proposed to circumvent these inconsistencies of the new windchill. The proposed correction makes this transition gradual rather than abrupt by applying it to the expression used for estimating the effects of wind on the convective heat exchange coefficient between humans and their cold and windy environment.


Author(s):  
J. J. Flores ◽  
G. Alvarez

This paper presents an experimental heat transfer study of the exterior side of a semitransparent wall (window) with film coating of a enclosure. The absorptance of the semitransparent wall with film coating was simulated using a film resistance on the glazing. A technique of infrared imagining thermography and a traversing system developed in Lawrence Berkeley National Laboratories (LBNL) were extended to measured from 1-D to 2-D local surface temperatures and boundary layer air temperatures of the exterior a glazing. From those measurements, the exterior heat flow and the exterior local convective heat transfer coefficients were calculated by applying a technique proposed by Truler [1]. The 2-D surface temperature distributions, the local convective heat transfer coefficient distributions and the average Nusselt number of the exterior side of the semitransparent wall with a simulated absorptance of 0.5 are presented.


1985 ◽  
Vol 6 ◽  
pp. 238-241 ◽  
Author(s):  
Takashi Yamanouchi ◽  
Sadao Kawaguchi

Effects of drifting snow are examined from measurements of radiation fluxes at Mizuho Station in the katabatic wind zone, Antarctica. A good correlation is found between the difference of downward longwave fluxes measured at two heights and wind speed used as an index of drifting snow. The wind increases the downward flux at a rate of 2 W m-2/m s-2when wind speed is higher than 13 m/s. Drifting snow suppresses the net longwave cooling at the surface. Direct solar radiation is depleted greatly by the drifting snow; however, the global flux decreases only slightly, compensated by the large increase of the diffuse flux, at a rate of about 1% for each 1 m/s increase in wind speed. At Mizuho Station, the effect on longwave radiation prevails throughout the year. The relation between snow drift content and wind speed is obtained from shortwave optical depth measurements as a function of wind speed. A simple parameterization of radiative properties is given.


Sign in / Sign up

Export Citation Format

Share Document