Adaptive Calibration on the Commercial Vehicle Test Bed

ATZ worldwide ◽  
2015 ◽  
Vol 117 (5) ◽  
pp. 22-25 ◽  
Author(s):  
David Koch ◽  
Joachim Gruber-Scheikl ◽  
Andreas Rainer
2012 ◽  
Vol 457-458 ◽  
pp. 1529-1535
Author(s):  
Tao Chen ◽  
Lang Wei

Virtual proving ground (VPG) are used effectively for commercial vehicle system development, human factor study, and other purposes by enabling to reproduce actual driving conditions in a safe and tightly controlled environment. This paper describes a virtual proving ground developed for design and evaluation of commercial vehicle and for driver-vehicle interaction study. VPG consists of a real-time vehicle simulation system, a visual and audio system, a driver handling signals acquisition system providing a realistic interface between the operator and the simulated environment, and 3D proving ground databases with areas suitable for various types of vehicle test tasks. The real-time vehicle simulation system simulates dynamic motion of realistic vehicle models in real-time. The visual system generates high fidelity driving scenes. The handling signals collection system acquires the steering, braking, accelerating, and shifting operation of driver. The pilot experiments carried out in the areas of vehicle handling and stability study are also presented to show the effectiveness of the developed VPG.


Author(s):  
Tong Li ◽  
Youmin Zhang ◽  
Brandon Gordon

In this paper, two sliding mode based fault tolerant control (SM-FTC) strategies are designed, implemented and flight-tested in a physical quadrotor unmanned helicopter under the propeller damage and actuator fault conditions. Sliding model control (SMC) is well known for its capability of handling uncertainty and is expected to be a robust controller. Based on the concept of sliding mode control, both passive and active fault tolerant controls have been designed and experimentally tested on a quadrotor UAV (unmanned aerial vehicle) test-bed, known as Qball-X4, available at Concordia University in the presence of actuator faults and propeller damages. These two types of controllers are carried out and compared through theoretical analysis, simulation, and experimental flight tests on the quadrotor UAV system. Good control performance has been achieved in the presence of actuator faults and propeller damages.


2021 ◽  
Vol 11 (22) ◽  
pp. 10837
Author(s):  
Jintao Su ◽  
Zhaoxiang Deng

Due to the difficulty of obtaining statistical energy parameters of complex structures and the complexity of modeling connection and model verification, the hybrid FE-SEA model has many problems in modeling complex structures. Therefore, in order to solve the above problems, this paper provides a reference for the application of the hybrid FE-SEA model in complex structures. In this paper, the hybrid FE-SEA commercial vehicle model is established by an experimental statistical energy parameter modeling method and a modification method. The model division and subsystem connection modeling of a complex substructure of a heavy vehicle cab are studied. In the hybrid model, the hybrid line connection and the hybrid point connection are established. On this basis, the parameters of the cab model were studied, and the statistical energy parameters such as modal density, internal loss factor, and coupling loss factor were obtained by the experimental method. The statistical energy parameters of the cab acoustic model are modified. Finally, the accuracy of the model is verified by vehicle test. In addition, the acoustic performance of the cab was optimized, and airtightness and acoustic packaging were verified. The full parameter modeling and correction method is adopted in this paper, which is an effective supplement to the traditional statistical energy parameter modeling method.


Sign in / Sign up

Export Citation Format

Share Document