scholarly journals Study on FE-SEA Modeling and Acoustic Performance of Heavy Duty Commercial Vehicle Based on Experimental Statistical Energy Parameters

2021 ◽  
Vol 11 (22) ◽  
pp. 10837
Author(s):  
Jintao Su ◽  
Zhaoxiang Deng

Due to the difficulty of obtaining statistical energy parameters of complex structures and the complexity of modeling connection and model verification, the hybrid FE-SEA model has many problems in modeling complex structures. Therefore, in order to solve the above problems, this paper provides a reference for the application of the hybrid FE-SEA model in complex structures. In this paper, the hybrid FE-SEA commercial vehicle model is established by an experimental statistical energy parameter modeling method and a modification method. The model division and subsystem connection modeling of a complex substructure of a heavy vehicle cab are studied. In the hybrid model, the hybrid line connection and the hybrid point connection are established. On this basis, the parameters of the cab model were studied, and the statistical energy parameters such as modal density, internal loss factor, and coupling loss factor were obtained by the experimental method. The statistical energy parameters of the cab acoustic model are modified. Finally, the accuracy of the model is verified by vehicle test. In addition, the acoustic performance of the cab was optimized, and airtightness and acoustic packaging were verified. The full parameter modeling and correction method is adopted in this paper, which is an effective supplement to the traditional statistical energy parameter modeling method.

Sensors ◽  
2021 ◽  
Vol 21 (3) ◽  
pp. 792
Author(s):  
Oleksandr Drozd ◽  
Grzegorz Nowakowski ◽  
Anatoliy Sachenko ◽  
Viktor Antoniuk ◽  
Volodymyr Kochan ◽  
...  

This paper presents a power-oriented monitoring of clock signals that is designed to avoid synchronization failure in computer systems such as FPGAs. The proposed design reduces power consumption and increases the power-oriented checkability in FPGA systems. These advantages are due to improvements in the evaluation and measurement of corresponding energy parameters. Energy parameter orientation has proved to be a good solution for detecting a synchronization failure that blocks logic monitoring circuits. Key advantages lay in the possibility to detect a synchronization failure hidden in safety-related systems by using traditional online testing that is based on logical checkability. Two main types of power-oriented monitoring are considered: detecting a synchronization failure based on the consumption and the dissipation of power, which uses temperature and current consumption sensors, respectively. The experiments are performed on real FPGA systems with the controlled synchronization disconnection and the use of the computer-aided design (CAD) utility to estimate the decreasing values of the energy parameters. The results demonstrate the limited checkability of FPGA systems when using the thermal monitoring of clock signals and success in monitoring by the consumption current.


2012 ◽  
Vol 457-458 ◽  
pp. 1529-1535
Author(s):  
Tao Chen ◽  
Lang Wei

Virtual proving ground (VPG) are used effectively for commercial vehicle system development, human factor study, and other purposes by enabling to reproduce actual driving conditions in a safe and tightly controlled environment. This paper describes a virtual proving ground developed for design and evaluation of commercial vehicle and for driver-vehicle interaction study. VPG consists of a real-time vehicle simulation system, a visual and audio system, a driver handling signals acquisition system providing a realistic interface between the operator and the simulated environment, and 3D proving ground databases with areas suitable for various types of vehicle test tasks. The real-time vehicle simulation system simulates dynamic motion of realistic vehicle models in real-time. The visual system generates high fidelity driving scenes. The handling signals collection system acquires the steering, braking, accelerating, and shifting operation of driver. The pilot experiments carried out in the areas of vehicle handling and stability study are also presented to show the effectiveness of the developed VPG.


2008 ◽  
Vol 123 (5) ◽  
pp. 3060-3060 ◽  
Author(s):  
Maxime Bolduc ◽  
Noureddine Atalla

2020 ◽  
Vol 23 (1) ◽  
Author(s):  
Bruno Amaral Haddad ◽  
Tânia Mara Silva ◽  
Lucélia Lemes Gonçalves ◽  
Mateus Rodrigues Silva ◽  
Cláudio Moreira Junior ◽  
...  

Objective: Evaluate the microtensile bond strength (µTBS) in different dentin thicknesses, under simulated pulpal pressure (SPP), submitted to an adhesive technique using laser irradiation. Material and methods: Forty sound human molars were sectioned and randomly divided into two groups (n=20): Group 1 – 1 mm of dentin thickness; Group 2 – 2 mm of dentin thickness. Each group was divided into two subgroups (n=10): Subgroup A – Absence of SPP; Subgroup P – Presence of SPP (15 cm H2O). The samples were sequentially treated with: 37% phosphoric acid, adhesive system (Adper Single Bond 2), Nd:YAG laser irradiation (60 s, 1064 nm, 10 Hz) using 60 and 100 mJ/pulse energy parameters and photopolymerization (10 s). A composite resin block (Filtek Z350) was built up onto the irradiated area. After 30 days stored in water, the samples were sectioned and submitted to microtensile test (10 kgf load cell, 0.5mm/min). Data were analyzed by three-way ANOVA and Tukey tests. Results: Three-way ANOVA revealed no significant differences for SPP (p=0.0821) and for dentin thickness p= 0.9405) on bond strength. The laser energy parameters (p=0.001) indicated that 100 mJ showed greater µTBS means compared to the group irradiated with 60 mJ. Dentin thickness did not affect on µTBS. The presence of SPP reduced the mean µTBS values.  Conclusions: Simulated pulpal pressure did not affect the µTBS using 60 mJ of laser energy parameter. At 100 mJ, the presence of SPP negatively influenced the bond strength, regardless of dentin thickness. KEYWORDSBond strength; Dentin; Intrapulpal pressure; Nd:YAG laser.


2017 ◽  
Vol 16 (02) ◽  
pp. 1750017
Author(s):  
Shuming Chen ◽  
Lianhui Wang ◽  
Jiqang Song ◽  
Dengfeng Wang ◽  
Jing Chen

The interior sound pressure levels of a commercial vehicle cab at the driver’s right ear position and head rest position are determined as evaluation indices of vehicle acoustic performances. A statistical energy analysis model of the commercial vehicle cab was created by using statistical energy analysis method. The simulated interior acoustic performance of the cab has a significant coincidence with the experimental results. A response surface model was presented to determine the relationship between sound package parameters and evaluation indices of the interior acoustic performance for the vehicle cab. A multi-objective optimization was performed by using NSGA II algorithm with weighting coefficient method. The presented method provides a new idea for the multi-objective optimization design of the acoustic performances in vehicle noise analysis and control field.


ATZ worldwide ◽  
2015 ◽  
Vol 117 (5) ◽  
pp. 22-25 ◽  
Author(s):  
David Koch ◽  
Joachim Gruber-Scheikl ◽  
Andreas Rainer

2005 ◽  
Author(s):  
Maxime Bolduc ◽  
Nourddine Atalla ◽  
Andrew Wareing

2021 ◽  
Author(s):  
Shiang-Jen Wu ◽  
Chih-Tsung Hsu ◽  
Che-Hao Chang

Abstract This study proposes a stochastic artificial neural network (named ANN_GA-SA_MTF), in which the parameters of the multiple transfer functions considered are calibrated by the modified genetic algorithm (GA-SA), to effectively provide the real-time forecasts of hydrological variates and the associated reliabilities under the observation and predictions given (model inputs); also, the resulting forecasts can be adjusted through the real-time forecast-error correction method (RTEC_TS&KF) based on difference between real-time observations and forecasts. The observed 10-days rainfall depths and water levels (i.e., hydrological estimates) from 2008 to 2018 recorded within the Shangping sub-basin in northern Taiwan are adopted as the study data and their stochastic properties are quantified for simulating 1,000 sets of rainfall and water levels at 36 10-days periods as the training datasets. The results from the model verification indicate that the observed 10-days rainfall depths and water levels are obviously located at the prediction interval (i.e., 95% confidence interval), revealing that the proposed ANN_GA-SA_MTF model can capture the temporal behavior of 10-days rainfall depths and water levels within the study area. In spite of the resulting forecasts with an acceptable difference from the observation, their real-time corrections have evident agreement with the observations, namely, the resulting adjusted forecasts with high accuracy.


Sign in / Sign up

Export Citation Format

Share Document