A Precise Model of Insect Flight Vitality and Development of Unmanned Micro Aerial Vehicle

Author(s):  
R. Anandan ◽  
K. Kalaivani
2016 ◽  
Vol 29 (5) ◽  
pp. 1159-1177 ◽  
Author(s):  
Mohd Firdaus Bin Abas ◽  
Azmin Shakrine Bin Mohd Rafie ◽  
Hamid Bin Yusoff ◽  
Kamarul Arifin Bin Ahmad

2020 ◽  
pp. 327-345
Author(s):  
Kun Feng ◽  
Krzysztof Sibilski

This article is concerned with the resonant property which is exhibited in insect flight, and analyzes how resonant propulsion works when implemented in powering a flapping wing micro aerial vehicle. This article is divided into three parts. In the first part, information regarding to insect flight, the resonant property, and flapping wing micro aerial vehicles are described. In the second part, mathematical models representing the micro aerial vehicle (basing on the model developed by Bolsman) are applied, simplified and built into simulation in MATLAB. Some interesting properties from the simulations are presented.


2012 ◽  
Author(s):  
James Joo ◽  
Gregory Reich ◽  
James Elgersma ◽  
Kristopher Aber

Author(s):  
Jinwoo Jeon ◽  
Sungwook Jung ◽  
Eungchang Lee ◽  
Duckyu Choi ◽  
Hyun Myung

2021 ◽  
Vol 11 (5) ◽  
pp. 2347 ◽  
Author(s):  
Jorge Solis ◽  
Christoffer Karlsson ◽  
Simon Johansson ◽  
Kristoffer Richardsson

This research aims to develop an automatic unmanned aerial vehicle (UAV)-based indoor environmental monitoring system for the acquisition of data at a very fine scale to detect rapid changes in environmental features of plants growing in greenhouses. Due to the complexity of the proposed research, in this paper we proposed an off-board distributed control system based on visual input for a micro aerial vehicle (MAV) able to hover, navigate, and fly to a desired target location without considerably affecting the effective flight time. Based on the experimental results, the MAV was able to land on the desired location within a radius of about 10 cm from the center point of the landing pad, with a reduction in the effective flight time of about 28%.


Author(s):  
Jianxun Du ◽  
Peng Hao ◽  
Mabao Liu ◽  
Rui Xue ◽  
Lin’an Li

Because of the advantages of light weight, small size, and good maneuverability, the bio-inspired micro aerial vehicle has a wide range of application prospects and development potential in military and civil areas, and has become one of the research hotspots in the future aviation field. The beetle’s elytra possess high strength and provide the protection of the abdomen while being functional to guarantee its flight performance. In this study, the internal microstructure of beetle’s elytra was observed by scanning electron microscope (SEM), and a variety of bionic thin-walled structures were proposed and modelled. The energy absorption characteristics and protective performance of different configurations of thin-walled structures with hollow columns under impact loading was analyzed by finite element method. The parameter study was carried out to show the influence of the velocity of impactor, the impact angle of the impactor and the wall thickness of honeycomb structure. This study provides an important inspiration for the design of the protective structure of the micro aerial vehicle.


Author(s):  
Asier Ania ◽  
Dominique Poirel ◽  
Marie-Josée Potvin ◽  
Steeve Montminy

The use of an aerial vehicle would greatly enhance the domain of exploration on Mars. The main constraint in such a design would be the extreme Martian environment. The low-density atmosphere suggests the use of a low Reynolds number flight regime modeled after flapping wing insect flight. This flapping wing flight employs several unsteady aerodynamic mechanisms; delayed stall, wake capture, and rotational mechanisms. Two prototypes, a flapping wing and a rotary-flapping wing hybrid, have been built and will be tested in order to quantify the 'overall lift' generated and allow us to evaluate the efficacy of flapping wing flight on Mars.


Sign in / Sign up

Export Citation Format

Share Document