Structural DNA nanotechnology towards therapeutic applications

Author(s):  
Youngdo Yoon ◽  
Chungha Lee ◽  
Seung Joong Kim
Nanomaterials ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1332
Author(s):  
Armando Hernandez-Garcia

Proteins and DNA exhibit key physical chemical properties that make them advantageous for building nanostructures with outstanding features. Both DNA and protein nanotechnology have growth notably and proved to be fertile disciplines. The combination of both types of nanotechnologies is helpful to overcome the individual weaknesses and limitations of each one, paving the way for the continuing diversification of structural nanotechnologies. Recent studies have implemented a synergistic combination of both biomolecules to assemble unique and sophisticate protein–DNA nanostructures. These hybrid nanostructures are highly programmable and display remarkable features that create new opportunities to build on the nanoscale. This review focuses on the strategies deployed to create hybrid protein–DNA nanostructures. Here, we discuss strategies such as polymerization, spatial directing and organizing, coating, and rigidizing or folding DNA into particular shapes or moving parts. The enrichment of structural DNA nanotechnology by incorporating protein nanotechnology has been clearly demonstrated and still shows a large potential to create useful and advanced materials with cell-like properties or dynamic systems. It can be expected that structural protein–DNA nanotechnology will open new avenues in the fabrication of nanoassemblies with unique functional applications and enrich the toolbox of bionanotechnology.


Nanomaterials ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1413
Author(s):  
Sofia Ojasalo ◽  
Petteri Piskunen ◽  
Boxuan Shen ◽  
Mauri A. Kostiainen ◽  
Veikko Linko

Viruses are among the most intriguing nanostructures found in nature. Their atomically precise shapes and unique biological properties, especially in protecting and transferring genetic information, have enabled a plethora of biomedical applications. On the other hand, structural DNA nanotechnology has recently emerged as a highly useful tool to create programmable nanoscale structures. They can be extended to user defined devices to exhibit a wide range of static, as well as dynamic functions. In this review, we feature the recent development of virus-DNA hybrid materials. Such structures exhibit the best features of both worlds by combining the biological properties of viruses with the highly controlled assembly properties of DNA. We present how the DNA shapes can act as “structured” genomic material and direct the formation of virus capsid proteins or be encapsulated inside symmetrical capsids. Tobacco mosaic virus-DNA hybrids are discussed as the examples of dynamic systems and directed formation of conjugates. Finally, we highlight virus-mimicking approaches based on lipid- and protein-coated DNA structures that may elicit enhanced stability, immunocompatibility and delivery properties. This development also paves the way for DNA-based vaccines as the programmable nano-objects can be used for controlling immune cell activation.


Structural DNA nanotechnology is a system whereby branched DNA molecules are fashioned into objects, or 1D, 2D and 3D lattices, as well as nanomechanical devices. Normally, one is dealing with the usual B-form DNA molecule, but variations on this theme can lead to alterations in both the structures and the properties of the constructs. 2’-Fluoro DNA (FDNA), wherein one of the hydrogen atoms of the 2’ carbon is replaced by a fluorine atom, is a minimal steric perturbation on the structure of the DNA backbone. The helical structure of this duplex is of great interest for applications in structural DNA nanotechnology, because the DNA-FDNA hybrid assumes an A-form double helix, without the instabilities associated with RNA. Here we have used an atomic force microscopic method to estimate the helicity of DNA-FDNA hybrids, and we find that the structure contains 11.8 nucleotide pairs per helical turn with an error of ± 0.6 nucleotide pairs, similar to other A-form molecules.


2019 ◽  
Vol 48 (1) ◽  
pp. 395-419 ◽  
Author(s):  
Eike-Christian Wamhoff ◽  
James L. Banal ◽  
William P. Bricker ◽  
Tyson R. Shepherd ◽  
Molly F. Parsons ◽  
...  

Structural DNA nanotechnology is beginning to emerge as a widely accessible research tool to mechanistically study diverse biophysical processes. Enabled by scaffolded DNA origami in which a long single strand of DNA is weaved throughout an entire target nucleic acid assembly to ensure its proper folding, assemblies of nearly any geometric shape can now be programmed in a fully automatic manner to interface with biology on the 1–100-nm scale. Here, we review the major design and synthesis principles that have enabled the fabrication of a specific subclass of scaffolded DNA origami objects called wireframe assemblies. These objects offer unprecedented control over the nanoscale organization of biomolecules, including biomolecular copy numbers, presentation on convex or concave geometries, and internal versus external functionalization, in addition to stability in physiological buffer. To highlight the power and versatility of this synthetic structural biology approach to probing molecular and cellular biophysics, we feature its application to three leading areas of investigation: light harvesting and nanoscale energy transport, RNA structural biology, and immune receptor signaling, with an outlook toward unique mechanistic insight that may be gained in these areas in the coming decade.


2006 ◽  
Vol 4 (18) ◽  
pp. 3414 ◽  
Author(s):  
Pamela E. Constantinou ◽  
Tong Wang ◽  
Jens Kopatsch ◽  
Lisa B. Israel ◽  
Xiaoping Zhang ◽  
...  

2010 ◽  
Vol 1 (13) ◽  
pp. 1994-2005 ◽  
Author(s):  
Souvik Modi ◽  
Dhiraj Bhatia ◽  
Friedrich C Simmel ◽  
Yamuna Krishnan

2011 ◽  
Vol 15 (4) ◽  
pp. 534-547 ◽  
Author(s):  
Zhao Zhang ◽  
Yanming Fu ◽  
Baojie Li ◽  
Guoyin Feng ◽  
Can Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document