scholarly journals Reduction of greenhouse gas and criteria pollutant emissions by direct conversion of associated flare gas to synthetic fuels at oil wellheads

2018 ◽  
Vol 9 (3) ◽  
pp. 305-321 ◽  
Author(s):  
Eric C. D. Tan ◽  
Dennis Schuetzle ◽  
Yimin Zhang ◽  
Orion Hanbury ◽  
Robert Schuetzle
2017 ◽  
Vol 5 (2) ◽  
pp. 30-32
Author(s):  
František Synák ◽  
◽  
Vladimír Rievaj

Passenger vehicles are major petroleum consumers and contributors of greenhouse gas and criteria pollutant emissions in many countries around the world. The amount of fuel consumed affects the environment, status of health of human population as well as financial costs that are associated with vehicle operation. The roof box is one of the often used vehicle attachments. The aim of the paper is to measure the increase of fuel consumption affected by an installed roof box. The impact of roof box on the increase of fuel consumption is measured at the speeds of 50 km.h-1, 90 km.h-1 and 130 km.h-1. The introduction of the paper describes particular harmful constituents of exhaust gases and their effects. Another part of the article includes the methodology of measurement and its results. The last part of the article involves the evaluation of results and recommendations relating to reduction of the increase of fuel consumption affected by roof box.


2018 ◽  
Vol 11 (4) ◽  
pp. 1293-1320 ◽  
Author(s):  
Christina B. Zapata ◽  
Chris Yang ◽  
Sonia Yeh ◽  
Joan Ogden ◽  
Michael J. Kleeman

Abstract. The California Regional Multisector Air Quality Emissions (CA-REMARQUE) model is developed to predict changes to criteria pollutant emissions inventories in California in response to sophisticated emissions control programs implemented to achieve deep greenhouse gas (GHG) emissions reductions. Two scenarios for the year 2050 act as the starting point for calculations: a business-as-usual (BAU) scenario and an 80 % GHG reduction (GHG-Step) scenario. Each of these scenarios was developed with an energy economic model to optimize costs across the entire California economy and so they include changes in activity, fuels, and technology across economic sectors. Separate algorithms are developed to estimate emissions of criteria pollutants (or their precursors) that are consistent with the future GHG scenarios for the following economic sectors: (i) on-road, (ii) rail and off-road, (iii) marine and aviation, (iv) residential and commercial, (v) electricity generation, and (vi) biorefineries. Properly accounting for new technologies involving electrification, biofuels, and hydrogen plays a central role in these calculations. Critically, criteria pollutant emissions do not decrease uniformly across all sectors of the economy. Emissions of certain criteria pollutants (or their precursors) increase in some sectors as part of the overall optimization within each of the scenarios. This produces nonuniform changes to criteria pollutant emissions in close proximity to heavily populated regions when viewed at 4 km spatial resolution with implications for exposure to air pollution for those populations. As a further complication, changing fuels and technology also modify the composition of reactive organic gas emissions and the size and composition of particulate matter emissions. This is most notably apparent through a comparison of emissions reductions for different size fractions of primary particulate matter. Primary PM2.5 emissions decrease by 4 % in the GHG-Step scenario vs. the BAU scenario while corresponding primary PM0.1 emissions decrease by 36 %. Ultrafine particles (PM0.1) are an emerging pollutant of concern expected to impact public health in future scenarios. The complexity of this situation illustrates the need for realistic treatment of criteria pollutant emissions inventories linked to GHG emissions policies designed for fully developed countries and states with strict existing environmental regulations.


2017 ◽  
Author(s):  
Christina B. Zapata ◽  
Chris Yang ◽  
Sonia Yeh ◽  
Joan Ogden ◽  
Michael J. Kleeman

Abstract. The California REgional Multisector AiR QUality Emissions (CA-REMARQUE) model is developed to predict changes to criteria pollutant emissions inventories in California in response to sophisticated programs implemented to achieve deep Green House Gas (GHG) emissions reductions. Two scenarios for the year 2050 act as the starting point for calculations: a Business as Usual (BAU) scenario and an aggressive GHG reduction (GHG-Step) scenario. Each of these scenarios was developed with an energy economic model to optimize costs across the entire California economy and so they necessarily include changes in activity, fuels, and technology. Separate algorithms are developed to estimate emissions of criteria pollutants (or their precursors) that are consistent with the future GHG scenarios for the following economic sectors: (i) on-road, (ii) rail and off-road, (iii) marine and aviation, (iv) residential and commercial, (v) electricity generation, and (vi) biorefineries. Properly accounting for new technologies involving electrification, bio-fuels, and hydrogen play a central role in these calculations. Critically, criteria pollutant emissions do not decrease uniformly across all sectors of the economy. Emissions of certain criteria pollutants (or their precursors) increase in some sectors as part of the overall optimization within each of the scenarios. This produces non-uniform changes to criteria pollutant emissions in close proximity to heavily populated regions when viewed at 4 km spatial resolution, with obvious implications for exposure to air pollution for those populations. As a further complication, changing fuels and technology also modify the composition of reactive organic gas emissions and the size and composition of particulate matter emissions. This manifests most notably through a comparison of emissions reductions for different size fractions of primary particulate matter. Primary PM2.5 emissions decrease by 4 % in the GHG-Step scenario vs. the BAU scenario while corresponding primary PM0.1 emissions decrease by a factor of 36 %. Ultrafine particles (PM0.1) are an emerging pollutant of concern expected to impact public health in future scenarios. The complexity of this situation illustrates the need for realistic treatment of criteria pollutant emissions inventories linked to GHG emissions policies designed for fully developed countries and states with strict existing environmental regulations.


2014 ◽  
Vol 2014 ◽  
pp. 1-13 ◽  
Author(s):  
Mostofa Kamal Nasir ◽  
Rafidah Md Noor ◽  
M. A. Kalam ◽  
B. M. Masum

Greenhouse gas emitted by the transport sector around the world is a serious issue of concern. To minimize such emission the automobile engineers have been working relentlessly. Researchers have been trying hard to switch fossil fuel to alternative fuels and attempting to various driving strategies to make traffic flow smooth and to reduce traffic congestion and emission of greenhouse gas. Automobile emits a massive amount of pollutants such as Carbon Monoxide (CO), hydrocarbons (HC), carbon dioxide (CO2), particulate matter (PM), and oxides of nitrogen (NOx). Intelligent transport system (ITS) technologies can be implemented to lower pollutant emissions and reduction of fuel consumption. This paper investigates the ITS techniques and technologies for the reduction of fuel consumption and minimization of the exhaust pollutant. It highlights the environmental impact of the ITS application to provide the state-of-art green solution. A case study also advocates that ITS technology reduces fuel consumption and exhaust pollutant in the urban environment.


ChemSusChem ◽  
2016 ◽  
Vol 9 (6) ◽  
pp. 588-594 ◽  
Author(s):  
Liwen Hu ◽  
Yang Song ◽  
Shuqiang Jiao ◽  
Yingjun Liu ◽  
Jianbang Ge ◽  
...  

Author(s):  
Yimin Zhang ◽  
Shiva Habibi ◽  
Heather L. MacLean

The electricity generation sector is far from sustainable; in Ontario, 77% of electricity consumed is generated from non-renewable sources such as coal, natural gas and nuclear. As a result, this sector contributes significantly to many environmental challenges including global warming, smog formation, and acid deposition. It is critical to improve the sustainability of electricity generation through the incorporation of sustainable design concepts. Sustainable design takes into account the environmental performance of a product or process over its entire life cycle (including design and development, raw material acquisition, production, use, and end-of-life). Innovative design has resulted in new technologies for electricity generation. Generating electricity from biomass is one of the alternative technologies which could have the potential to improve the sustainability of the electricity generation sector. In this research we examine various scenarios for displacing coal-based generation. Coal gasification is a mature technology and to replace some or all of the feedstock with biomass, a re-design of some portions of the electricity generation technology are required. The technical changes in the process depend on several issues including the physical and chemical characteristics of biomass. We evaluate the environmental performance of electricity generation from agricultural residues through conducting a life cycle inventory for three biomass-to-electricity scenarios for the Province of Ontario; 1) a 5% co-firing of agricultural residues with coal in existing coal plants, 2) a 15% co-firing of agricultural residues with coal in existing coal plants, and 3) a hypothetical power plant which produces electricity from 100% agricultural residues using biomass gasification technology. For comparison purposes, we analyze a current coal only option using plant specific data. We quantify life cycle energy use, greenhouse gas and air pollutant emissions for electricity. Our results suggest that on a life cycle basis electricity generated from biomass can achieve a reduction in greenhouse gas emissions of 4% (for the 5% biomass co-firing) to 96% (for the 100% biomass gasification) compared to the coal-only option. Similarly, reductions in air pollutant emissions (sulfur oxides, nitrogen oxides, and particulate matter) range from 4% to 98%. Our study indicates that life cycle analysis is a useful tool for assisting decision makers in the selection of more sustainable design options for future electricity generation.


Sign in / Sign up

Export Citation Format

Share Document