scholarly journals The effect of welding conditions on solidification cracking susceptibility of type 310S stainless steel during laser welding using an in-situ observation technique

Author(s):  
Kota Kadoi ◽  
Akira Fujinaga ◽  
Motomichi Yamamoto ◽  
Kenji Shinozaki
2011 ◽  
Vol 38 (6) ◽  
pp. 0603005
Author(s):  
温鹏 Wen Peng ◽  
荻崎贤二 Shinozaki Kenji ◽  
山本元道 Yamamoto Motomichi

2014 ◽  
Vol 782 ◽  
pp. 3-7
Author(s):  
Kenji Shinozaki ◽  
Motomichi Yamamoto ◽  
Kohta Kadoi ◽  
Peng Wen

Solidification cracking during welding is very serious problem for practical use. Therefore, there are so many reports concerning solidification cracking. Normally, solidification cracking susceptibility of material is quantitatively evaluated using Trans-Varestraint test. On the other hand, local solidification cracking strain was tried to measure precisely using in-situ observation method, called MISO method about 30 years ago. Recently, digital high-speed video camera develops very fast and its image quality is very high. Therefore, we have started to observe solidification crack using in site observation method. In this paper, the local critical strain of a solidification crack was measured and the high temperature ductility curves of weld metals having different dilution ratios and different grain sizes to evaluate quantitatively the effects of dilution ratio and grain size on solidification cracking susceptibility by using an improved in situ observation method.


Author(s):  
Tomonori Yamada ◽  
Takahisa Shobu ◽  
Susumu Yamashita ◽  
Takemitsu Ogawa ◽  
Kenta Sugihara ◽  
...  

Spatial temperature distribution during the laser welding process has a huge effect on any residual stress distribution. Therefore, understanding of the transient hydraulic phenomena which affect the temperature distribution in the molten pool is very important. In this work, intense X-ray measurement at the Super Photon ring-8 GeV (SPring-8) facility well carried out to document the transient hydraulic phenomena in the molten pool during the laser welding process. Based on in-situ observation of inside material, the experimental results confirmed that the molten pool shapes, hydraulic condition such as flow velocity, etc.. In the case of laser power is 330W and spot diameter is 1mm, we observed the steady flow which consisted of downward flow and upward flow. The flow velocities were about 19.5 mm/s and 9.0 mm/s, respectively. Moreover, the rate of phase change was obtained from molten pool shape during laser welding. The rate of phase change was not constant during laser welding. Thus the interface shape might change at all time. Therefore, to evaluate the temperature distribution, it is necessary to consider not only convection but also the interface shape. These results indicate that the intense X-ray measurement during laser welding is very effective for the understanding the molten pool phenomena.


Materials ◽  
2020 ◽  
Vol 13 (14) ◽  
pp. 3178 ◽  
Author(s):  
Wenbin Wang ◽  
Li Xiong ◽  
Dan Wang ◽  
Qin Ma ◽  
Yan Hu ◽  
...  

A new test method named “Trapezoidal hot” cracking test was developed to evaluate solidification cracking susceptibility of stainless steel during laser welding. The new test method was used to obtain the solidification cracking directly, and the solidification cracking susceptibility could be evaluated by the solidification cracking rate, defined as the ratio of the solidification cracking length to the weld bead length under certain conditions. The results show that with the increase in the solidification cracking rate, the solidification cracking susceptibility of SUS310 stainless steel was much higher than that of SUS316 and SUS304 stainless steels during laser welding (at a welding speed of 1.0 m/min) because a fully austenite structure appeared in the weld joint of the former steel, while the others were ferrite and austenitic mixed structures during solidification. Besides, with an increase in welding speed from 1.0 to 2.0 m/min during laser welding, the solidification cracking susceptibility of SUS310 stainless steel decreased slightly; however, there was a tendency towards an increase in the solidification cracking susceptibility of SUS304 stainless steel due to the decrease in the amount of ferrite under a higher cooling rate.


Sign in / Sign up

Export Citation Format

Share Document