solidification crack
Recently Published Documents


TOTAL DOCUMENTS

54
(FIVE YEARS 13)

H-INDEX

10
(FIVE YEARS 2)

2021 ◽  
Vol 883 ◽  
pp. 234-241
Author(s):  
Timo Rautio ◽  
Jarmo Mäkikangas ◽  
Jani Kumpula ◽  
Antti Järvenpää ◽  
Atef Hamada

This paper focuses on the laser weldability of additively manufactured (AM) Inconel 718. The experiments of this research were conducted on different series of AM Inconel 718 alloy, i.e. as­-built, heat­ treated (HT), and HT after welding, and comprehensively characterized using optical microscope and electron back scattering diffraction (EBSD). The weld morphology and microstruc­tural evolution of the fusion zone were recorded. The mechanical properties of the welded AM Inconel 718 were evaluated by tensile tests and hardness measurements. It was found that solidification crack and micropore defects are induced in the as­built AM Inconel 718. However, defect­free weld was promoted in the HT alloy. The changes in hardness profiles and tensile strength under the experimen­tal parameters were further reported. Homogenous hardness of 500 HV across the weld was obtained when HT was applied after the LW.


Materials ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1659
Author(s):  
Minho Park ◽  
Jisun Kim ◽  
Changmin Pyo ◽  
Joonsik Son ◽  
Jaewoong Kim

The environment of the global shipbuilding market is changing rapidly. Recently, the International Maritime Organization (IMO) has tightened regulations on sulfur oxide content standards for marine fuels and tightened sulfur oxide emission standards for the entire coastal region of China to consider the environment globally and use LNG as a fuel. There is a tendency for the number of vessels to operate to increase significantly. To use cryogenic LNG fuel, various pieces of equipment, such as storage tanks or valves, are required, and equipment using steel, which has excellent impact toughness in cryogenic environments, is required. Four steel types are specified in the IGG Code, and 9% Ni steel is mostly used for LNG fuel equipment. However, to secure safety at cryogenic temperatures, a systematic study investigating the causes of quality deterioration occurring in the 9% Ni steel welding process is required and a discrimination function capable of quality evaluation is urgent. Therefore, this study proposes a plan where the uniform quality of 9% Nickel steel is secured by reviewing the tendency of the solidification crack susceptibility among the quality problems of cryogenic steel to establish the criteria for quality deterioration and to develop a system capable of quality discrimination and defect avoidance.


2021 ◽  
pp. 101959
Author(s):  
Nadia Kouraytem ◽  
Po-Ju Chiang ◽  
Runbo Jiang ◽  
Christopher Kantzos ◽  
Joseph Pauza ◽  
...  

Metals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 267
Author(s):  
Lei Huang ◽  
Xizhang Chen ◽  
Sergey Konovalov ◽  
Arshad Noor Siddiquee ◽  
Gang Lu ◽  
...  

In this work, a welding solidification crack sensitivity test platform was established to study the effect of wire feeding speed (WFS) on solidification crack sensitivity during cold metal transfer (CMT) welding for AA6061 aluminum alloy. The test results show that as the WFS increased from 4 m/min to 5.5 m/min, the sensitivity of the solidification cracks also increased. With a further increase in the value of the WFS, the crack sensitivity decreased and eventually ceased to exist. A new perspective of the microstructure and crack propagation mechanics model was applied to understand the effect of WFS on solidification cracks. With the use of scanning electron microscopy (SEM) and a high-speed camera, it was found that as the WFS increased from 4 m/min to 5.5 m/min, the microstructure of the grain size changed from bigger to smaller, and the stability of the crystal microstructure was reduced. The crack propagation mechanics model was changed, which promotes crack propagation, increasing by 233%. When the WFS continued to increase beyond 5.5 m/min, the size of the crystal structure changed from small to big, the stability of the crystal microstructure was increased, the crack generation was suppressed, and the cracking rate was significantly reduced.


Materials ◽  
2020 ◽  
Vol 13 (24) ◽  
pp. 5617
Author(s):  
Minho Park ◽  
Jisun Kim ◽  
Changmin Pyo ◽  
JoonSik Son ◽  
Jaewoong Kim

To prevent the contamination of the marine environment caused by ship exhaust gas, the demand for LNG (liquefied natural gas) fueled ships is increasing worldwide. A tank to store LNG at cryogenic temperatures is indispensable to such LNG-fueled ships. Since the materials used for LNG fuel propulsion tanks must have excellent mechanical properties such as impact toughness at cryogenic temperatures, the International Maritime Organization limits the IGC Code only to four types. Most of the tank materials for LNG-fueled ships ordered recently are adopting ASTM A553-1 material, but a systematic study to analyze the problem of quality degradation that may occur when welding A553-1 steel is required to secure the safety of cryogenic tanks. Therefore, in this study, among various quality problems, the tendency of weld solidification crack vulnerability is identified, and a decision system and optimization procedure are developed. In addition, a method of securing the welding quality of A553-1 steel was proposed by setting quality deterioration standards.


Materials ◽  
2020 ◽  
Vol 13 (2) ◽  
pp. 483
Author(s):  
Zhanglan Chen ◽  
Jianmin Liu ◽  
Haijun Qiu

High-strength steel suffers from an increasing susceptibility to solidification cracking in welding due to increasing carbon equivalents. However, the cracking mechanism is not fully clear for a confidently completely crack-free welding process. To present a full, direct knowledge of fracture behavior in high-strength steel welding, a three-dimensional (3-D) modeling method is developed using the extended finite element method (XFEM). The XFEM model and fracture loads are linked with the full model and the output of the thermo-mechanical finite element method (TM-FEM), respectively. Solidification cracks in welds are predicted to initiate at the upper tip at the current cross-section, propagate upward to and then through the upper weld surface, thereby propagating the lower crack tip down to the bottom until the final failure. This behavior indicates that solidification cracking is preferred on the upper weld surface, which has higher weld stress introduced by thermal contraction and solidification shrinkage. The modeling results show good agreement with the solidification crack fractography and in situ observations. Further XFEM results show that the initial defects that exhibit higher susceptibility to solidification cracking are those that are vertical to the weld plate plane, open to the current cross-section and concentratedly distributed compared to tilted, closed and dispersedly distributed ones, respectively.


Sign in / Sign up

Export Citation Format

Share Document