The influence of arc interactions and a central filler wire on shielding gas flow in tandem GMAW

2016 ◽  
Vol 60 (4) ◽  
pp. 713-718 ◽  
Author(s):  
M. Häßler ◽  
S. Rose ◽  
U. Füssel
Metals ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1443 ◽  
Author(s):  
Maroš Vyskoč ◽  
Miroslav Sahul ◽  
Mária Dománková ◽  
Peter Jurči ◽  
Martin Sahul ◽  
...  

In this article, the effect of process parameters on the microstructure and mechanical properties of AW5083 aluminum alloy weld joints welded by a disk laser were studied. Butt welds were produced using 5087 (AlMg4.5MnZr) filler wire, with a diameter of 1.2 mm, and were protected from the ambient atmosphere by a mixture of argon and 30 vol.% of helium (Aluline He30). The widest weld joint (4.69 mm) and the highest tensile strength (309 MPa) were observed when a 30 L/min shielding gas flow rate was used. Conversely, the narrowest weld joint (4.15 mm) and the lowest tensile strength (160 MPa) were found when no shielding gas was used. The lowest average microhardness (55.4 HV0.1) was recorded when a 30 L/min shielding gas flow rate was used. The highest average microhardness (63.9 HV0.1) was observed when no shielding gas was used. In addition to the intermetallic compounds, β-Al3Mg2 and γ-Al12Mg17, in the inter-dendritic areas of the fusion zone (FZ), Al49Mg32, which has an irregular shape, was recorded. The application of the filler wire, which contains zirconium, resulted in grain refinement in the fusion zone. The protected weld joint was characterized by a ductile fracture in the base material (BM). A brittle fracture of the unshielded weld joint was caused by the presence of Al2O3 particles. The research results show that we achieved the optimal welding parameters, because no cracks and pores were present in the shielded weld metal (WM).


Author(s):  
Mateus Barancelli Schwedersky ◽  
Álisson Fernandes da Rosa ◽  
Marcelo Pompermaier Okuyama ◽  
Régis Henrique Gonçalves e Silva

Metals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 524
Author(s):  
Maider Arana ◽  
Eneko Ukar ◽  
Iker Rodriguez ◽  
Amaia Iturrioz ◽  
Pedro Alvarez

With the advent of disruptive additive manufacturing (AM), there is an increasing interest and demand of high mechanical property aluminium parts built directly by these technologies. This has led to the need for continuous improvement of AM technologies and processes to obtain the best properties in aluminium samples and develop new alloys. This study has demonstrated that porosity can be reduced below 0.035% in area in Al-Mg samples manufactured by CMT-based WAAM with commercial filler metal wires by selecting the correct shielding gas, gas flow rate, and deposition strategy (hatching or circling). Three phase Ar+O2+N2O mixtures (Stargold®) are favourable when the hatching deposition strategy is applied leading to wall thickness around 6 mm. The application of circling strategy (torch movement with overlapped circles along the welding direction) enables the even build-up of layers with slightly thicker thickness (8 mm). In this case, Ar shielding gas can effectively reduce porosity if proper flow is provided through the torch. Reduced gas flows (lower than 30 Lmin) enhance porosity, especially in long tracks (longer than 90 mm) due to local heat accumulation. Surprisingly, rather high porosity levels (up to 2.86 area %) obtained in the worst conditions, had a reduced impact on the static tensile test mechanical properties, and yield stress over 110 MPa, tensile strength over 270 MPa, and elongation larger than 27% were achieved either for Ar circling, Ar hatching, or Stargold® hatching building conditions. In all cases anisotropy was lower than 11%, and this was reduced to 9% for the most appropriate shielding conditions. Current results show that due to the selected layer height and deposition parameters there was a complete re-melting of the previous layer and a thermal treatment on the prior bottom layer that refined the grain size removing the original dendritic and elongated structure. Under these conditions, the minimum reported anisotropy levels can be achieved.


PRICM ◽  
2013 ◽  
pp. 2131-2137
Author(s):  
S.W. Campbell ◽  
A.M. Galloway ◽  
N.A. McPherson

2006 ◽  
Vol 39 (3) ◽  
pp. 563-574 ◽  
Author(s):  
Antonio Ancona ◽  
Teresa Sibillano ◽  
Pietro Mario Lugarà ◽  
Giuseppe Gonnella ◽  
Giuseppe Pascazio ◽  
...  

2016 ◽  
Vol 91 ◽  
pp. 424-431 ◽  
Author(s):  
I. Bitharas ◽  
S.W. Campbell ◽  
A.M. Galloway ◽  
N.A. McPherson ◽  
A.J. Moore
Keyword(s):  
Gas Flow ◽  

Materials ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2677
Author(s):  
Yu Qin ◽  
Jinge Liu ◽  
Yanzhe Chen ◽  
Peng Wen ◽  
Yufeng Zheng ◽  
...  

Laser powder bed fusion (LPBF) of Zn-based metals exhibits prominent advantages to produce customized biodegradable implants. However, massive evaporation occurs during laser melting of Zn so that it becomes a critical issue to modulate laser energy input and gas shielding conditions to eliminate the negative effect of evaporation fume during the LPBF process. In this research, two numerical models were established to simulate the interaction between the scanning laser and Zn metal as well as the interaction between the shielding gas flow and the evaporation fume, respectively. The first model predicted the evaporation rate under different laser energy input by taking the effect of evaporation on the conservation of energy, momentum, and mass into consideration. With the evaporation rate as the input, the second model predicted the elimination effect of evaporation fume under different conditions of shielding gas flow by taking the effect of the gas circulation system including geometrical design and flow rate. In the case involving an adequate laser energy input and an optimized shielding gas flow, the evaporation fume was efficiently removed from the processing chamber during the LPBF process. Furthermore, the influence of evaporation on surface quality densification was discussed by comparing LPBF of pure Zn and a Titanium alloy. The established numerical analysis not only helps to find the adequate laser energy input and the optimized shielding gas flow for the LPBF of Zn based metal, but is also beneficial to understand the influence of evaporation on the LPBF process.


2019 ◽  
Vol 35 (2) ◽  
pp. 368-376 ◽  
Author(s):  
Peng Wen ◽  
Yu Qin ◽  
Yanzhe Chen ◽  
Maximilian Voshage ◽  
Lucas Jauer ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document