scholarly journals Molecular modeling of the interaction of ligands with ACE2–SARS-CoV-2 spike protein complex

2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Meden F. Isaac-Lam
FEBS Journal ◽  
2019 ◽  
Vol 286 (23) ◽  
pp. 4797-4818 ◽  
Author(s):  
Gema R. Cristóbal‐Mondragón ◽  
Bárbara Lara‐Chacón ◽  
Ángel Santiago ◽  
Víctor De‐la‐Rosa ◽  
Rogelio González‐González ◽  
...  

Virology ◽  
1996 ◽  
Vol 219 (1) ◽  
pp. 125-132 ◽  
Author(s):  
MATTHEW MULVEY ◽  
DENNIS T. BROWN

2021 ◽  
Author(s):  
Mahmoud Elkazzaz ◽  
Tamer Haydara ◽  
Yousry Esam-Eldin Abo-Amer ◽  
Heba Sahyon ◽  
Israa M Shamkh ◽  
...  

Abstract Background The COVID-19 pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has infected over 100 million people causing over 2.4 million deaths over the world, and it is still expanding. Although, ACE2 has been identified as the principal host cell receptor of 2019-nCoV, and it is thought to play a critical role in the virus's entrance into the cell and subsequent infection, many cells can be infected by COVID-19 while also expressing little or no ACE2. Furthermore, COVID-19 may case a variety of pre and post symptoms with unknown etiology . It was documented that COVID-19 infection leads to a loss of smell (anosmia) but The COVID-19 entry receptor, angiotensin-converting enzyme 2 (ACE2), is not expressed in the receptor of olfactory neurons, or its generation is limited to a minor fraction of these neurons. Moreover It was demonstrated that COVID-19 infects and kills lymphocyte thorough its ACE2 receptor. But numerous studies found that lymphocytes did not express ACE2 receptors or express it with a little, insufficient amount. It is clear from the information and findings presented and addressed below that COVID-19 not only binds to ACE2, but also to additional receptors, leading to existence of pre- and post-covid-19 symptoms which remain unexplained. As a result, discovering and identifying these receptors could lead to the development of new treatments that could suppress COVID-19 and reduce its severity and pathogenicityMethods The STRA6 receptor protein were submitted to the server for functional interaction associated network between partners for the STRING (Research Online of Interacting Genes/Proteins Data Basis version 10.0)13 .Docking study of each Spike -ACE 2 and STRA6 receptor protein were carried out using HDOCK server (http://hdock.phys.hust.edu.cn/). The binding mode of Spike -ACE 2 and STRA6 receptor protein is retrieved form the PDB https://www.rcsb.org/ with accession number (7DMU , 5sy1)ResultsOur results showed that COVID-19 Spike protein exhibited a high binding affinity for human STRA6 and a low binding energy with it. The docking score of COVID-19 spike protein with STRA6( -354.68) kcal/mol was higher than the docking score of spike protein with ACE2((-341.21 ) kcal/mol. Spike protein Receptor Binding Domain(RDB) of COVID-19 strongly and efficiently binds to STRA6 receptor, definitely to the RDB vital residues of RBP-binding motif located in STRA6 receptor. The docking of STRA6 target protein with spike viral protein revealed the involvement of the spike protein into the extracellular and membrane part of the STRA6 receptor and amino acids residues of STRA6 along with spike protein which make interactions and play an important role in formation of complexes. The corresponding distances about the residue contacts between proteins STRA6- Spike protein complex are documented here where the STRA6- Spike protein complexes binding site are the RDB of the CHOLESTEROL in STRA6 receptor which bind with interface residue( ARG 511A , VAL 512A THR 515A ALA 516A ASN 519A with interface residue degree (2.965 , 3.595 , 3.286 , 4.592 , and 4.235) representatively, also the ability of the spike to bind to RDB of the STRA 6 protein in the ILE 131C , MET 145C , HIS 86A with interface residue( 4.961 , 4.953 and 3.271) representatively. STRA6- Spike protein complex with PDB ID (5SY1 , 6LZG) representatively ,the chain A ,B with Align – length ( 582 ,194 ) then the quarry coverage of proteins 0.793 and 1.000 with sequence identity 96.2 % and 100,0 % representatively. The surface view of complex reveals that the binding pocket of STRA6- Spike protein and Spike ACE 2 complexes with RMSD (189.44 Å , 1.00 Å ) representatively and docking score (-341.21 ,-354.68) kcal/mol, the quality of the receptor and the ligand are LGscore and MaxSub ( 2.416 , 0.147 ) where the structure are correct representatively for the STRA6 receptor protein, and LGscore and MaxSub ,(5.056 ,0.217) .ConclusionSTRA6 is a critical regulator of many biological processes thorough initiating cellular retinol uptake, in different organs and tissues as in immune cells for improving the immune system homeostasis in various populations. Our docking study reveals that COVID-19 spike protein binds directly to The integral membrane receptor (STRA6) in addition to its binding sites of the cholesterol. STRA6 mediates cellular uptake of retinol (vitamin A) by recognizing a molecule of RBP-retinol to trigger release and internalization of retinol . Therefore COVID-19 may leads to downregulation of STRA6 receptor leading to inhibition the regulatory function of retinoic acid and cholesterol helps in existing of pre and post-covid-91 symptoms and complications including lymhopenia, Nuerogical disorders, Ineffective RIG-I pathway, Interferon inhibition, Cytokine storm, Diabetes, Hormonal imbalance, Thrombosis, and Smell loss. Therefore, we believe that this novel discovery that STRA6 receptor acts as a novel binding receptor for COVID-19 could explain many previously unexplained pre and post-covid-91 infection symptoms . Moreover, retinoic acid metabolism was found to be defective in COVID-19 (cytokine storm), sepsis, ARDS and SIRS .As a result reconstitution of the retinoid signaling may prove to be a valid strategy for COVID-19 management. We suggest that Vitamin A metabolites ,especially, retinoic acid will be promising and effective treatments for COVID-91 infection and its unknown aetiology symptoms. It worth mentioning that aerosolized all- trans retinoic acid and 13 cis retinoic acid is currently under clinical investigation (ClinicalTrials.gov Identifier: NCT05002530, NCT04353180)


2021 ◽  
Author(s):  
Mahmoud Ramadan Elkazzaz ◽  
Tamer Haydara ◽  
Yousry Esam-Eldin Abo-Amer ◽  
Heba Sahyon ◽  
Israa M Shamkh ◽  
...  

Abstract BackgroundThe COVID-19 pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has infected over 100 million people causing over 2.4 million deaths over the world, and it is still expanding. Although, ACE2 has been identified as the principal host cell receptor of 2019-nCoV, and it is thought to play a critical role in the virus's entrance into the cell and subsequent infection, many cells can be infected by COVID-19 while also expressing little or no ACE2. Unlike other viral infections, COVID-19 is characterized by widespread and severe systemic manifestations, immune dysregulation and multi-organ involvement. In addition, the range of serious inflammatory, neuropsychiatric and autoimmune diseases called post-COVID syndromes are now left behind as disease tables. This wide and diverse spectrum of diseases seen in COVID-19 cannot be explained by the mechanism of viral tropism mediated by ACE2 and TMPRSS2 receptors. It is possible that different receptor and signaling mechanisms that cannot be explained by the viral tropism mechanism play a role in the pathogenesis of acute systemic effects and chronic post-COVID syndromes in COVID-19. It was showed that COVID-19 infection leads to a loss of smell (anosmia) but the COVID-19 entry receptors, angiotensin-converting enzyme 2 (ACE2), is not expressed in the receptor of olfactory neurons, or its generation is limited to a minor fraction of these neurons. Moreover It was demonstrated that COVID-19 could infect lymphocyte through its ACE2 receptors, but numerous studies found that lymphocytes don't express ACE2 receptors or express it with a little, insufficient amount. It is clear from the information and findings presented and addressed in our article that COVID-19 not only binds to ACE2, but also to additional receptors, leading to more disease lethality and existence of covid-19 symptoms which remain unexplained. As a result, discovering and identifying these receptors could lead to the development of new treatments that could suppress COVID-19 and reduce its severity and pathogenicity. Herein, we insilico discovered that blocking of STRA6 by the SARS-CoV-2 spike protein could disrupt the retinoid signaling mechanism and leads to pathogenetic consequences through some other inflammatory pathways.MethodsThe STRA6 receptor protein were submitted to the server for functional interaction associated network between partners for the STRING (Research Online of Interacting Genes/Proteins Data Basis version 10.0)13 .Docking study of each Spike -ACE 2 and STRA6 receptor protein were carried out using HDOCK server (http://hdock.phys.hust.edu.cn/). The binding mode of Spike -ACE 2 and STRA6 receptor protein is retrieved form the PDB https://www.rcsb.org/ with accession number (7DMU , 5sy1)ResultsOur results showed that COVID-19 Spike protein exhibited a high binding affinity for human STRA6 and a low binding energy with it. The docking score of COVID-19 spike protein with STRA6( -354.68) kcal/mol was higher than the docking score of spike protein with ACE2 (-341.21 ) kcal/mol. Spike protein Receptor Binding Domain(RDB) of COVID-19 strongly and efficiently binds to STRA6 receptor, definitely to the RDB vital residues of RBP-binding motif located in STRA6 receptor. The docking of STRA6 target protein with spike viral protein revealed the involvement of the spike protein into the extracellular and membrane part of the STRA6 receptor and amino acids residues of STRA6 along with spike protein which make interactions and play an important role in formation of complexes. The corresponding distances about the residue contacts between proteins STRA6- Spike protein complex are documented here where the STRA6- Spike protein complexes binding site are the RDB of the CHOLESTEROL in STRA6 receptor which bind with interface residue( ARG 511A , VAL 512A THR 515A ALA 516A ASN 519A with interface residue degree (2.965 , 3.595 , 3.286 , 4.592 , and 4.235) representatively, also the ability of the spike to bind to RDB of the STRA 6 protein in the ILE 131C , MET 145C , HIS 86A with interface residue( 4.961 , 4.953 and 3.271) representatively. STRA6- Spike protein complex with PDB ID (5SY1 , 6LZG).ConclusionsSTRA6 is a critical regulator of many biological processes thorough initiating cellular retinol uptake, in different organs and tissues as in immune cells for improving the immune system homeostasis in various populations. Our docking study reveals that COVID-19 spike protein binds directly to the integral membrane receptor (STRA6) in addition to its binding sites of the cholesterol. STRA6 mediates cellular uptake of retinol (vitamin A) by recognizing a molecule of RBP-retinol to trigger release and internalization of retinol . Therefore COVID-19 may leads to downregulation of STRA6 receptor leading to inhibition the regulatory function of retinoic acid and cholesterol helping in existing symptoms and complications including lymhopenia, Nuerogical disorders, Ineffective RIG-I pathway, Interferon inhibition, Cytokine storm, Diabetes, Hormonal imbalance, Thrombosis, and Smell loss. Therefore, we believe that this novel discovery that STRA6 receptor acts as a novel binding receptor for COVID-19 could explain COVID-19 severity and its common symptoms with unknown aetiology . Moreover, retinoic acid metabolism was found to be defective in COVID-19 (cytokine storm), sepsis, ARDS and SIRS .As a result reconstitution of the retinoid signaling may prove to be a valid strategy for COVID-19 management. We suggest that Vitamin A metabolites ,especially, retinoic acid will be promising and effective treatments for COVID-19 infection and its unknown aetiology symptoms. It worth mentioning that aerosolized all- trans retinoic acid and 13 cis retinoic acid is currently under clinical investigation (ClinicalTrials.gov Identifier: NCT05002530, NCT04353180)


2005 ◽  
Vol 72 (2-3) ◽  
pp. 271-278 ◽  
Author(s):  
Julien Gras ◽  
Denise Sy ◽  
Séverine Eon ◽  
Michel Charlier ◽  
Melanie Spotheim-Maurizot

2021 ◽  
Vol 12 ◽  
Author(s):  
Philip McMillan ◽  
Thomas Dexhiemer ◽  
Richard R. Neubig ◽  
Bruce D. Uhal

The COVID-19 pandemic caused by the coronavirus SARS-COV-2 has cost many lives worldwide. In dealing with affected patients, the physician is faced with a very unusual pattern of organ damage that is not easily explained on the basis of prior knowledge of viral-induced pathogenesis. It is established that the main receptor for viral entry into tissues is the protein angiotensin-converting enzyme-2 [“ACE-2”, (1)]. In a recent publication (2), a theory of autoimmunity against ACE-2, and/or against the ACE-2/SARS-COV-2 spike protein complex or degradation products thereof, was proposed as a possible explanation for the unusual pattern of organ damage seen in COVID-19. In the light of more recent information, this manuscript expands on the earlier proposed theory and offers additional, testable hypotheses that could explain both the pattern and timeline of organ dysfunction most often observed in COVID-19.


Author(s):  
Werner Kühlbrandt ◽  
Da Neng Wang ◽  
K.H. Downing

The light-harvesting chlorophyll-a/b protein complex (LHC-II) is the most abundant membrane protein in the chloroplasts of green plants where it functions as a molecular antenna of solar energy for photosynthesis. We have grown two-dimensional (2d) crystals of the purified, detergent-solubilized LHC-II . The crystals which measured 5 to 10 μm in diameter were stabilized for electron microscopy by washing with a 0.5% solution of tannin. Electron diffraction patterns of untilted 2d crystals cooled to 130 K showed sharp spots to 3.1 Å resolution. Spot-scan images of 2d crystals were recorded at 160 K with the Berkeley microscope . Images of untilted crystals were processed, using the unbending procedure by Henderson et al . A projection map of the complex at 3.7Å resolution was generated from electron diffraction amplitudes and high-resolution phases obtained by image processing .A difference Fourier analysis with the same image phases and electron diffraction amplitudes recorded of frozen, hydrated specimens showed no significant differences in the 3.7Å projection map. Our tannin treatment therefore does not affect the structural integrity of the complex.


Sign in / Sign up

Export Citation Format

Share Document