interface residue
Recently Published Documents


TOTAL DOCUMENTS

40
(FIVE YEARS 18)

H-INDEX

11
(FIVE YEARS 4)

2021 ◽  
Author(s):  
Mahmoud Ramadan Elkazzaz ◽  
Tamer Haydara ◽  
Yousry Esam-Eldin Abo-Amer ◽  
Heba Sahyon ◽  
Israa M Shamkh ◽  
...  

Abstract BackgroundThe COVID-19 pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has infected over 100 million people causing over 2.4 million deaths over the world, and it is still expanding. Although, ACE2 has been identified as the principal host cell receptor of 2019-nCoV, and it is thought to play a critical role in the virus's entrance into the cell and subsequent infection, many cells can be infected by COVID-19 while also expressing little or no ACE2. Unlike other viral infections, COVID-19 is characterized by widespread and severe systemic manifestations, immune dysregulation and multi-organ involvement. In addition, the range of serious inflammatory, neuropsychiatric and autoimmune diseases called post-COVID syndromes are now left behind as disease tables. This wide and diverse spectrum of diseases seen in COVID-19 cannot be explained by the mechanism of viral tropism mediated by ACE2 and TMPRSS2 receptors. It is possible that different receptor and signaling mechanisms that cannot be explained by the viral tropism mechanism play a role in the pathogenesis of acute systemic effects and chronic post-COVID syndromes in COVID-19. It was showed that COVID-19 infection leads to a loss of smell (anosmia) but the COVID-19 entry receptors, angiotensin-converting enzyme 2 (ACE2), is not expressed in the receptor of olfactory neurons, or its generation is limited to a minor fraction of these neurons. Moreover It was demonstrated that COVID-19 could infect lymphocyte through its ACE2 receptors, but numerous studies found that lymphocytes don't express ACE2 receptors or express it with a little, insufficient amount. It is clear from the information and findings presented and addressed in our article that COVID-19 not only binds to ACE2, but also to additional receptors, leading to more disease lethality and existence of covid-19 symptoms which remain unexplained. As a result, discovering and identifying these receptors could lead to the development of new treatments that could suppress COVID-19 and reduce its severity and pathogenicity. Herein, we insilico discovered that blocking of STRA6 by the SARS-CoV-2 spike protein could disrupt the retinoid signaling mechanism and leads to pathogenetic consequences through some other inflammatory pathways.MethodsThe STRA6 receptor protein were submitted to the server for functional interaction associated network between partners for the STRING (Research Online of Interacting Genes/Proteins Data Basis version 10.0)13 .Docking study of each Spike -ACE 2 and STRA6 receptor protein were carried out using HDOCK server (http://hdock.phys.hust.edu.cn/). The binding mode of Spike -ACE 2 and STRA6 receptor protein is retrieved form the PDB https://www.rcsb.org/ with accession number (7DMU , 5sy1)ResultsOur results showed that COVID-19 Spike protein exhibited a high binding affinity for human STRA6 and a low binding energy with it. The docking score of COVID-19 spike protein with STRA6( -354.68) kcal/mol was higher than the docking score of spike protein with ACE2 (-341.21 ) kcal/mol. Spike protein Receptor Binding Domain(RDB) of COVID-19 strongly and efficiently binds to STRA6 receptor, definitely to the RDB vital residues of RBP-binding motif located in STRA6 receptor. The docking of STRA6 target protein with spike viral protein revealed the involvement of the spike protein into the extracellular and membrane part of the STRA6 receptor and amino acids residues of STRA6 along with spike protein which make interactions and play an important role in formation of complexes. The corresponding distances about the residue contacts between proteins STRA6- Spike protein complex are documented here where the STRA6- Spike protein complexes binding site are the RDB of the CHOLESTEROL in STRA6 receptor which bind with interface residue( ARG 511A , VAL 512A THR 515A ALA 516A ASN 519A with interface residue degree (2.965 , 3.595 , 3.286 , 4.592 , and 4.235) representatively, also the ability of the spike to bind to RDB of the STRA 6 protein in the ILE 131C , MET 145C , HIS 86A with interface residue( 4.961 , 4.953 and 3.271) representatively. STRA6- Spike protein complex with PDB ID (5SY1 , 6LZG).ConclusionsSTRA6 is a critical regulator of many biological processes thorough initiating cellular retinol uptake, in different organs and tissues as in immune cells for improving the immune system homeostasis in various populations. Our docking study reveals that COVID-19 spike protein binds directly to the integral membrane receptor (STRA6) in addition to its binding sites of the cholesterol. STRA6 mediates cellular uptake of retinol (vitamin A) by recognizing a molecule of RBP-retinol to trigger release and internalization of retinol . Therefore COVID-19 may leads to downregulation of STRA6 receptor leading to inhibition the regulatory function of retinoic acid and cholesterol helping in existing symptoms and complications including lymhopenia, Nuerogical disorders, Ineffective RIG-I pathway, Interferon inhibition, Cytokine storm, Diabetes, Hormonal imbalance, Thrombosis, and Smell loss. Therefore, we believe that this novel discovery that STRA6 receptor acts as a novel binding receptor for COVID-19 could explain COVID-19 severity and its common symptoms with unknown aetiology . Moreover, retinoic acid metabolism was found to be defective in COVID-19 (cytokine storm), sepsis, ARDS and SIRS .As a result reconstitution of the retinoid signaling may prove to be a valid strategy for COVID-19 management. We suggest that Vitamin A metabolites ,especially, retinoic acid will be promising and effective treatments for COVID-19 infection and its unknown aetiology symptoms. It worth mentioning that aerosolized all- trans retinoic acid and 13 cis retinoic acid is currently under clinical investigation (ClinicalTrials.gov Identifier: NCT05002530, NCT04353180)


2021 ◽  
Author(s):  
Mahmoud Elkazzaz ◽  
Tamer Haydara ◽  
Yousry Esam-Eldin Abo-Amer ◽  
Heba Sahyon ◽  
Israa M Shamkh ◽  
...  

Abstract Background The COVID-19 pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has infected over 100 million people causing over 2.4 million deaths over the world, and it is still expanding. Although, ACE2 has been identified as the principal host cell receptor of 2019-nCoV, and it is thought to play a critical role in the virus's entrance into the cell and subsequent infection, many cells can be infected by COVID-19 while also expressing little or no ACE2. Furthermore, COVID-19 may case a variety of pre and post symptoms with unknown etiology . It was documented that COVID-19 infection leads to a loss of smell (anosmia) but The COVID-19 entry receptor, angiotensin-converting enzyme 2 (ACE2), is not expressed in the receptor of olfactory neurons, or its generation is limited to a minor fraction of these neurons. Moreover It was demonstrated that COVID-19 infects and kills lymphocyte thorough its ACE2 receptor. But numerous studies found that lymphocytes did not express ACE2 receptors or express it with a little, insufficient amount. It is clear from the information and findings presented and addressed below that COVID-19 not only binds to ACE2, but also to additional receptors, leading to existence of pre- and post-covid-19 symptoms which remain unexplained. As a result, discovering and identifying these receptors could lead to the development of new treatments that could suppress COVID-19 and reduce its severity and pathogenicityMethods The STRA6 receptor protein were submitted to the server for functional interaction associated network between partners for the STRING (Research Online of Interacting Genes/Proteins Data Basis version 10.0)13 .Docking study of each Spike -ACE 2 and STRA6 receptor protein were carried out using HDOCK server (http://hdock.phys.hust.edu.cn/). The binding mode of Spike -ACE 2 and STRA6 receptor protein is retrieved form the PDB https://www.rcsb.org/ with accession number (7DMU , 5sy1)ResultsOur results showed that COVID-19 Spike protein exhibited a high binding affinity for human STRA6 and a low binding energy with it. The docking score of COVID-19 spike protein with STRA6( -354.68) kcal/mol was higher than the docking score of spike protein with ACE2((-341.21 ) kcal/mol. Spike protein Receptor Binding Domain(RDB) of COVID-19 strongly and efficiently binds to STRA6 receptor, definitely to the RDB vital residues of RBP-binding motif located in STRA6 receptor. The docking of STRA6 target protein with spike viral protein revealed the involvement of the spike protein into the extracellular and membrane part of the STRA6 receptor and amino acids residues of STRA6 along with spike protein which make interactions and play an important role in formation of complexes. The corresponding distances about the residue contacts between proteins STRA6- Spike protein complex are documented here where the STRA6- Spike protein complexes binding site are the RDB of the CHOLESTEROL in STRA6 receptor which bind with interface residue( ARG 511A , VAL 512A THR 515A ALA 516A ASN 519A with interface residue degree (2.965 , 3.595 , 3.286 , 4.592 , and 4.235) representatively, also the ability of the spike to bind to RDB of the STRA 6 protein in the ILE 131C , MET 145C , HIS 86A with interface residue( 4.961 , 4.953 and 3.271) representatively. STRA6- Spike protein complex with PDB ID (5SY1 , 6LZG) representatively ,the chain A ,B with Align – length ( 582 ,194 ) then the quarry coverage of proteins 0.793 and 1.000 with sequence identity 96.2 % and 100,0 % representatively. The surface view of complex reveals that the binding pocket of STRA6- Spike protein and Spike ACE 2 complexes with RMSD (189.44 Å , 1.00 Å ) representatively and docking score (-341.21 ,-354.68) kcal/mol, the quality of the receptor and the ligand are LGscore and MaxSub ( 2.416 , 0.147 ) where the structure are correct representatively for the STRA6 receptor protein, and LGscore and MaxSub ,(5.056 ,0.217) .ConclusionSTRA6 is a critical regulator of many biological processes thorough initiating cellular retinol uptake, in different organs and tissues as in immune cells for improving the immune system homeostasis in various populations. Our docking study reveals that COVID-19 spike protein binds directly to The integral membrane receptor (STRA6) in addition to its binding sites of the cholesterol. STRA6 mediates cellular uptake of retinol (vitamin A) by recognizing a molecule of RBP-retinol to trigger release and internalization of retinol . Therefore COVID-19 may leads to downregulation of STRA6 receptor leading to inhibition the regulatory function of retinoic acid and cholesterol helps in existing of pre and post-covid-91 symptoms and complications including lymhopenia, Nuerogical disorders, Ineffective RIG-I pathway, Interferon inhibition, Cytokine storm, Diabetes, Hormonal imbalance, Thrombosis, and Smell loss. Therefore, we believe that this novel discovery that STRA6 receptor acts as a novel binding receptor for COVID-19 could explain many previously unexplained pre and post-covid-91 infection symptoms . Moreover, retinoic acid metabolism was found to be defective in COVID-19 (cytokine storm), sepsis, ARDS and SIRS .As a result reconstitution of the retinoid signaling may prove to be a valid strategy for COVID-19 management. We suggest that Vitamin A metabolites ,especially, retinoic acid will be promising and effective treatments for COVID-91 infection and its unknown aetiology symptoms. It worth mentioning that aerosolized all- trans retinoic acid and 13 cis retinoic acid is currently under clinical investigation (ClinicalTrials.gov Identifier: NCT05002530, NCT04353180)


2021 ◽  
Author(s):  
Guimei Yu ◽  
Xiaowei Pan ◽  
Jingfang Hao ◽  
Lifang Shi ◽  
Yong Zhang ◽  
...  

Non-photochemical quenching (NPQ) plays an important role for phototrophs in decreasing photo-oxidative damage. qH is a sustained component of NPQ and depends on the plastid lipocalin (LCNP). A thylakoid membrane-anchored protein SUPPRESSOR OF QUENCHING1 (SOQ1) prevents qH formation by inhibiting LCNP. SOQ1 suppresses qH with its lumen-located C-terminal Trx-like and NHL domains. Here we report crystal structures and biochemical characterization of SOQ1 lumenal domains. Our results show that the Trx-like and NHL domains are stably associated, with the potential redox-active motif located at their interface. Residue E859 essential for SOQ1 function is pivotal for mediating the inter-domain interaction. Moreover, the C-terminal region of SOQ1 forms an independent -stranded domain, which possibly interacts with the Trx-like domain through disulfide exchange. Furthermore, SOQ1 is susceptible to cleavage at the loops connecting the neighboring domains both in vitro and in vivo, which could be a regulatory process for its suppression function of qH.


2021 ◽  
Vol 30 (1) ◽  
pp. 018703
Author(s):  
Hao Li ◽  
Sheng-You Huang

2020 ◽  
Vol 11 (4) ◽  
pp. 7539-7548
Author(s):  
Christina Nilofer ◽  
Arumugam Mohanapriya

Two or more proteins interact in vivo to perform complex molecular functions including catalysis, regulation, assembly, immunity and inhibition through the formation of stable interfaces. This interaction is governed by several factors that are selective, sensitive and specific in nature. Several interface features has been documented since 1975. The study of these interface features of proteins and their dynamicity during interaction with different proteins help understanding the mechanisms underlying diverse molecular functions and its biological processes. Computational tools greatly assist in studying such interface features that determine the interaction between two or more proteins, and in this context, this review enumerates the different interface features reported thus far along with the tools that aid in deciphering protein features (physicochemical characteristics, binding site and interface residue prediction and hotspot residues) along with their approaches that are employed in the prediction these features. Also, the review discusses the advantages and limitations of experimental techniques and computational biological tools deployed for deciphering the protein-protein interactions. Altogether, the review will provide insights into the optimal tools and different strategies involved in protein interaction studies that would facilitate the researchers to understand the protein structural features and molecular principles of protein-protein interaction with known functions.


Molecules ◽  
2020 ◽  
Vol 25 (19) ◽  
pp. 4353
Author(s):  
Yanfen Lyu ◽  
Xinqi Gong

Study of interface residue pairs is important for understanding the interactions between monomers inside a trimer protein–protein complex. We developed a two-layer support vector machine (SVM) ensemble-classifier that considers physicochemical and geometric properties of amino acids and the influence of surrounding amino acids. Different descriptors and different combinations may give different prediction results. We propose feature combination engineering based on correlation coefficients and F-values. The accuracy of our method is 65.38% in independent test set, indicating biological significance. Our predictions are consistent with the experimental results. It shows the effectiveness and reliability of our method to predict interface residue pairs of protein trimers.


2020 ◽  
Author(s):  
Sandra Smieszek ◽  
Bart Przychodzen ◽  
Vasilios Polymeropoulos ◽  
Christos Polymeropoulos ◽  
Mihael Polymeropoulos

ACE2 is a key receptor for SARS-CoV-2 cell entry. Binding of SARS-Cov-2 to ACE2 involves the viral Spike protein. The molecular interaction between ACE2 and Spike has been resolved. Interfering with this interaction might be used in treating patients with COVID-19. Inhibition of this interaction can be attained via multiple routes: here we focus on identifying small molecules that would prevent the interaction. Specifically we focus on small molecules and peptides that have the capacity to effectively bind the ACE2: RBD contact domain to prevent and reduce SARS-CoV-2 entry into the cell. We aim to identify molecules that prevent the docking of viral spike protein (mediated by RBD) onto cells expressing ACE2, without inhibiting the activity of ACE2. We utilize the most recent ACE2-RBD crystallography resolved model (PDB-ID:6LZG). Based on animal susceptibility data we narrowed down our interest to the location of amino acid 34 (Histidine) located on ACE2. We performed an in silico screen of a chemical library of compounds with several thousand small molecules including FDA approved compounds. All compounds were tested for binding to the proximal binding site located close to histidine 34 on ACE2. We report a list of four potential small molecules that potentially have the capacity to bind target residue: AY-NH2, a selective PAR4 receptor agonist peptide (CAS number: 352017-71-1), NAD+ (CAS number: 53-84-9), Reproterol, a short-acting β2 adrenoreceptor agonist used in the treatment of asthma (CAS number: 54063-54-6), and Thymopentin, a synthetic immune-stimulant which enhances production of thymic T cells (CAS number: 69558-55-0). The focus is on a High Throughput Screen Assay (HTSA), or in silico screen, delineating small molecules that are selectively binding/masking the crucial interface residue on ACE2 at His34. Consequently, inhibiting SARS-CoV-2 binding to host ACE2 and viral entry is a potent strategy to reduce cellular entry of the virus. We suggest that this anti-viral nature of this interaction is a viable strategy for COVID19 whereas the small molecules including peptides warrant further in vitro screens.


2020 ◽  
Author(s):  
Sandra Smieszek ◽  
Bart Przychodzen ◽  
Vasilios Polymeropoulos ◽  
Christos Polymeropoulos ◽  
Mihael Polymeropoulos

ACE2 is a key receptor for SARS-CoV-2 cell entry. Binding of SARS-Cov-2 to ACE2 involves the viral Spike protein. The molecular interaction between ACE2 and Spike has been resolved. Interfering with this interaction might be used in treating patients with COVID-19. Inhibition of this interaction can be attained via multiple routes: here we focus on identifying small molecules that would prevent the interaction. Specifically we focus on small molecules and peptides that have the capacity to effectively bind the ACE2: RBD contact domain to prevent and reduce SARS-CoV-2 entry into the cell. We aim to identify molecules that prevent the docking of viral spike protein (mediated by RBD) onto cells expressing ACE2, without inhibiting the activity of ACE2. We utilize the most recent ACE2-RBD crystallography resolved model (PDB-ID:6LZG). Based on animal susceptibility data we narrowed down our interest to the location of amino acid 34 (Histidine) located on ACE2. We performed an in silico screen of a chemical library of compounds with several thousand small molecules including FDA approved compounds. All compounds were tested for binding to the proximal binding site located close to histidine 34 on ACE2. We report a list of four potential small molecules that potentially have the capacity to bind target residue: AY-NH2, a selective PAR4 receptor agonist peptide (CAS number: 352017-71-1), NAD+ (CAS number: 53-84-9), Reproterol, a short-acting β2 adrenoreceptor agonist used in the treatment of asthma (CAS number: 54063-54-6), and Thymopentin, a synthetic immune-stimulant which enhances production of thymic T cells (CAS number: 69558-55-0). The focus is on a High Throughput Screen Assay (HTSA), or in silico screen, delineating small molecules that are selectively binding/masking the crucial interface residue on ACE2 at His34. Consequently, inhibiting SARS-CoV-2 binding to host ACE2 and viral entry is a potent strategy to reduce cellular entry of the virus. We suggest that this anti-viral nature of this interaction is a viable strategy for COVID19 whereas the small molecules including peptides warrant further in vitro screens.


Sign in / Sign up

Export Citation Format

Share Document