Ascorbic acid/bulbine natalensis/gelatin/potassium nitrate/RAD 140/silicon dioxide/stearic acid/VK 5211/Gelatin/oryza sativa/RAD 140

2020 ◽  
Vol 1831 (1) ◽  
pp. 61-61
2021 ◽  
pp. 2100199
Author(s):  
Xuelian Qi ◽  
Junlan Shao ◽  
Yinchu Cheng ◽  
Xiaoying He ◽  
Yan Li ◽  
...  
Keyword(s):  

Author(s):  
Xuelian Qi ◽  
Junlan Shao ◽  
Yinchu Cheng ◽  
Xiaoying He ◽  
Yan Li ◽  
...  

Abstract: 2-O-α-D-Glucopyranosyl-L-ascorbic acid (AA-2G) is an important industrial derivative of L-ascorbic acid (AA), which has the distinct advantages of non-reducibility, antioxidation, and reproducible decomposition into L-ascorbic acid and glucose. Enzymatic synthesis is a preferred method for AA-2G production over alternative chemical synthesis owing to the regioselective glycosylation reaction. α-Glucosidase, an enzyme classed into O- glycoside hydrolases, may be used in glycosylation reactions to synthesize AA-2G. Here, one α-glucosidase from Oryza sativa (rAGL) was recombinantly produced in Pichia pastoris GS115 and used for biosynthesis of AA-2G with few intermediates and byproducts. The extracellular rAGL reached 9.11 U/mL after fed-batch cultivation for 102 h in a 5-L fermenter. The specific activity of purified rAGL is 49.83 U/mg at 37 °C and pH 4.0. The optimal temperature of rAGL was 65 °C, and it was stable below 55 °C. rAGL was active over the range of pH 3.0–7.0, with the maximal activity at pH 4.0. Under the condition of 37 °C , pH 4.0, equimolar maltose and AA·Na, 8.7±0.4 g/L of AA-2G was synthesized by rAGL. These studies lay the basis for the industrial application of recombinant α-glucosidase. Keywords: α-Glucosidase; Oryza sativa; 2-O-α-D-glucopyranosyl-L-ascorbic acid; Transglycosylation; Pichia pastoris


2021 ◽  
Vol 58 (5) ◽  
pp. 789-793
Author(s):  
Buta Singh Dhillon ◽  
Gaurav Khosla ◽  
Tarvinder Pal Singh ◽  
Jagjeet Singh Lore

Proceedings ◽  
2020 ◽  
Vol 32 (1) ◽  
pp. 20 ◽  
Author(s):  
Sutthima Sriprasertsuk ◽  
John R. Varcoe ◽  
Carol Crean

Polypyrrole (PPy) fibre electrodes and their ability to sense paracetamol (as a model drug) in addition to interferents such as ascorbic acid and dopamine were studied. PPy was electrodeposited onto carbon fibre (CF) through electropolymerisation using cyclic voltammetry in the presence of two different counter anions: potassium nitrate (KNO3) and sodium dodecyl sulfate (SDS). PPy with SDS as dopant could sense paracetamol with an oxidation peak at 0.55 V vs. Ag/AgCl. The limit of detection of this fibre sensor was found to be 1 µM with a linear range of 1–100 µM of paracetamol (R2 = 0.985).


Sign in / Sign up

Export Citation Format

Share Document