Potassium nitrate and silicon dioxide priming improve germination, seedling growth and protective enzymes of rice var. FARO44 under drought

2021 ◽  
pp. 1-14
Author(s):  
Lawan Gana Ali ◽  
Rosimah Nulit ◽  
Mohd Hafiz Ibrahim ◽  
Christina Yong Seok Yien
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Lawan Gana Ali ◽  
Rosimah Nulit ◽  
Mohd Hafiz Ibrahim ◽  
Christina Yong Seok Yien

AbstractRice is an important staple crop produced and consumed worldwide. However, poor seed emergence is one of the main impediments to obtaining higher yield of rice especially in hot and dry ecosystems of the world that are ravaged by drought. Therefore, this study was carried out to evaluate the effects of potassium nitrate (KNO3), salicylic acid (SA) and silicon dioxide (SiO2) priming in improving emergence, seedling growth, biochemical attributes and antioxidant activities of FARO44 rice under drought conditions. Rice seedlings primed with 2.5% and 5% KNO3, 3% and 3.5% SiO2, and 1 mM and 2.5 mM SA were subjected to three drought levels of low, moderate and severe under the greenhouse. Seed emergence, seedling growth, biochemical attributes and antioxidant activities were thereafter evaluated. Seed priming experiments were laid in a completely randomized design with five replicates per treatment. The results found that rice seedlings responded differently to different priming treatments. However, all primed rice seedlings had significantly (P ≤ 0.05) improved emergence percentage (72–92%), seedling growth, seedling vigor, seedling fresh and dry biomass and shorter emergence time compared with controls. Likewise, total soluble protein content, activities of catalase, ascorbate peroxidase and superoxide dismutase, carbohydrate, soluble sugar and total chlorophyll contents of rice seedlings were increased by more than two-folds by seed priming compared with control. Salicylic acid showed less effect in increasing emergence, seedling growth, antioxidant activities and biochemical attributes of rice. Thus, this study established that seed priming with KNO3 (2.5% and 5%) and SiO2 (3% and 3.5%) were more effective in improving emergence, seedling growth, biochemical attributes and antioxidant activities of FARO44. Thus, priming of FARO44 rice with this chemical is recommended for fast emergence, seedling growth and drought resistance in dry ecosystems.


2003 ◽  
Vol 83 (4) ◽  
pp. 729-735 ◽  
Author(s):  
M. A. Matus-Cádiz ◽  
P. Hucl

An effective dormancy-breaking method may be of interest to wheat (Triticum aestivum L.) breeders selecting for increased seed dormancy prior to advancing their populations in greenhouse grow-outs. The objective of this study was to identify an effective pre-treatment for breaking dormancy in wheat that did not result in seedling etiolation. In 2000, eight dormant (W98616, line 211, EMDR-4, EMDR-9, EMDR-14, RL4137, Columbus, and AC Domain) and one nondormant line (Roblin) were grown at two locations in Saskatchewan. Seeds were: (i) stored for zero to 21 wks at 24°C before incubating at 20°C for 7 d; (ii) incubated at 5, 10, 15, 20, and 25°C for 14 d; and (iii) treated with gibberellic acid (GA3) (0.0006 and 0.0014 M), potassium nitrate (KNO3) (0.01 and 0.02 M), chilling, heating, chilling with 0.01 M KNO3, and heating with 0.01 M KNO3 before incubating at 10°C for 14 d. Seedling growth was observed in a duplicated growth chamber experiment. Seedling length, first inter-node length, and biomass yield data were collected from plants grown from seeds treated with four effective pretreatments. Data were subjected to an ANOVA. Six to 18 weeks of storage at 24°C were required to break the dormancy (≥ 95% germination) in dormant genotypes. Incubation at 10°C was the most effective temperature for promoting germination in dormant seeds after 10d of testing. Four pre-treatments including 0.0006 M GA3, 0.0014 M GA3, chilling with 0.01 M KNO3, and heating with 0.01 M KNO3 led to ≥ 95% germination within 10 d of testing. Only GA3 treatments were associated with etiolated seedling growth. Heating with 0.01 M KNO3 or chilling with 0.01 M KNO3, applied before incubating at 10°C in darkness, may be of interest to breeders selecting for increased dormancy before advancing breeding populations in greenhouse grow-outs. Key words: Triticum, dormancy, nitrate, chilling, heating, etiolated seedling


Seeds ◽  
2021 ◽  
Vol 1 (1) ◽  
pp. 5-15
Author(s):  
José A. Hernández ◽  
Pedro Díaz-Vivancos ◽  
José Ramón Acosta-Motos ◽  
Gregorio Barba-Espín

(1) Background: Seed treatment with potassium nitrate (KNO3) has been associated with dormancy breaking, improved germination and enhanced seedling growth and uniformity in a variety of plant species. However, the KNO3 effect seems to be dependent on plant species and treatment conditions. (2) Methods: We describe the effect of incubation of dry pea seeds with different KNO3 concentration on water uptake kinetic, early seedling growth, antioxidant metabolism and hormone profile in pea seedlings. (3) Results: Low (0.25 mM) KNO3 levels increased seedling water uptake and growth, whereas high (40 mM) levels decreased seedling growth. KNO3 treatment differentially affected the antioxidant defences. Low KNO3 levels maintained the activity of antioxidant enzymes, while high levels reduced the activity of H2O2-scavenging enzymes. KNO3 induced a progressive decline in ascorbate levels and reduced (GSH) and oxidised (GSSG) glutathione. Low KNO3 levels strongly increased GA1 and decreased ABA in both seedlings and cotyledons, resulting in a decline in the ABA/GAs ratio. (4) Conclusions: Pea seed treatment with a low KNO3 level promoted early seedling growth. In this process, an interaction among KNO3, antioxidant defences and ABA/GAs ratio is proposed.


Author(s):  
Peter Wothers

The name azote, proposed by Lavoisier and his colleagues, did not gain wide acceptance; nitrogen, meaning ‘nitre-former’, is the name now familiar to us. Modern chemists understand ‘nitre’ to mean ‘potassium nitrate’, one of the key ingredients of gunpowder, containing the elements potassium, oxygen, and nitrogen. However, although it dates back to antiquity, the name nitre initially referred to a completely different compound containing no nitrogen at all. It is the Latinized name, natrium, derived from this original use, that gives us the modern chemical symbol Na, for the element Humphry Davy named sodium. Travellers to modern-day northern Egypt may find themselves in a region known as the Nitrian Desert, or the Natron Valley—Wadi El Natrun. Here, ancient Egyptians would collect crude salt mixtures from certain lakes and use them for a variety of purposes, such as cleaning, making glass, embalming, and the preparation of medicines. The Egyptian word for the salt may be written ‘nṭry’ or ‘ntr’ (‘neter’), and it has survived for over three thousand years through variations including ‘neter’ (Hebrew), ‘nitron’ (Greek), ‘nitrum’(Latin), and more modern modifications ‘nether’, ‘niter’, ‘nitre’, ‘natrun’, and ‘natron’. Bartholomeus Anglicus, the thirteenth-century monk and author of De proprietatibus rerum (‘On the Properties of Things’), quotes Isidore of Seville from five hundred years earlier saying: ‘Nitrum hath ye name of the countrey of Nitria that is in Aegypt. Thereof is medicine made, & there with bodies and clothes be cleansed and washed.’ Whether the salt was actually named after the region or vice versa is not clear. Although its composition varied enormously, what distinguished nitre from common salt was the presence of significant proportions of sodium carbonate and sodium bicarbonate (sodium hydrogen carbonate). In addition to these carbonates, analyses of ancient samples, including that used in the embalming of the pharaoh Tutankhamun, who died in 1352 BC, also reveal large proportions of common salt (sodium chloride), sodium sulfate, and silica (silicon dioxide), with smaller proportions of calcium and magnesium carbonates and other minor impurities.


2018 ◽  
Vol 24 (2) ◽  
Author(s):  
SUPRIYA DIXIT ◽  
R. K. GUPTA

Currently, a real challenge for the workers in the agricultural research field is to stop or reduce the use of expensive agrochemicals/ chemical fertilizers which are hazardous to the environment as well as human health. Present study was aimed to improve the growth and obtain optimum yield of Vigna crop with eco-friendly, non-toxic way and to reduce the use of agrochemical/chemical fertilizer application in agricultural activities. A pot experiment was conducted to study the effect of chemical fertilizer (DAP) and biofertilizer ( Rhizobium strain) separately and in combination on seed germination and seedling growth (at 30 days) based on morphological parameters such as seedling length (cm), fresh weight (g), dry weight (g) and leaf area (cm)2 of Vigna radiata (L.) Wilczek. After one month (30 Days) observations, it was found that seedling length, fresh and dry weights and leaf area were maximum in T4 and minimum in T15, T7 and T8 favored improved seedling length and leaf area whereas T7, T8, and T9 favored improved fresh and dry weights as compared to control.


Author(s):  
K.H. Widdup ◽  
T.L. Knight ◽  
C.J. Waters

Slow establishment of caucasian clover (Trifolium ambiguum L.) is hindering the use of this legume in pasture mixtures. Improved genetic material is one strategy of correcting the problem. Newly harvested seed of hexaploid caucasian clover germplasm covering a range of origins, together with white and red clover and lucerne, were sown in 1 m rows in a Wakanui soil at Lincoln in November 1995. After 21 days, the caucasian clover material as a group had similar numbers of emerged seedlings as white clover and lucerne, but was inferior to red clover. There was wide variation among caucasian clover lines (48-70% seedling emergence), with the cool-season selection from cv. Monaro ranked the highest. Recurrent selection at low temperatures could be used to select material with improved rates of seedling emergence. Red clover and lucerne seedlings produced significantly greater shoot and root dry weight than caucasian and white clover seedlings. Initially, caucasian clover seedlings partitioned 1:1 shoot to root dry weight compared with 3:1 for white clover. After 2 months, caucasian clover seedlings had similar shoot growth but 3 times the root growth of white clover. Between 2 and 5 months, caucasian clover partitioned more to root and rhizome growth, resulting in a 0.3:1 shoot:root ratio compared with 2:1 for white clover. Both clover species had similar total dry weight after 5 months. Unhindered root/ rhizome devel-opment is very important to hasten the establishment phase of caucasian clover. The caucasian clover lines KZ3 and cool-season, both selections from Monaro, developed seedlings with greater shoot and root growth than cv. Monaro. KZ3 continued to produce greater root growth after 5 months, indicating the genetic potential for improvement in seedling growth rate. Different pasture estab-lishment techniques are proposed that take account of the seedling growth characteristics of caucasian clover. Keywords: establishment, genetic variation, growth, seedling emergence, Trifolium ambiguum


Sign in / Sign up

Export Citation Format

Share Document