Optimal point-to-point motion planning of non-holonomic mobile robots in the presence of multiple obstacles

Author(s):  
Moharam Habibnejad Korayem ◽  
Mostafa Nazemizadeh ◽  
Hamed Rahimi Nohooji
Author(s):  
Xin-Jun Liu ◽  
Zhao Gong ◽  
Fugui Xie ◽  
Shuzhan Shentu

In this paper, a mobile robot named VicRoB with 6 degrees of freedom (DOFs) driven by three tracked vehicles is designed and analyzed. The robot employs a 3-PPSR parallel configuration. The scheme of the mechanism and the inverse kinematic solution are given. A path planning method of a single tracked vehicle and a coordinated motion planning of three tracked vehicles are proposed. The mechanical structure and the electrical architecture of VicRoB prototype are illustrated. VicRoB can achieve the point-to-point motion mode and the continuous motion mode with employing the motion planning method. The orientation precision of VicRoB is measured in a series of motion experiments, which verifies the feasibility of the motion planning method. This work provides a kinematic basis for the orientation closed loop control of VicRoB whether it works on flat or rough road.


Author(s):  
Gerald Eaglin ◽  
Joshua Vaughan

The ability to track a trajectory without significant error is a vital requirement for mobile robots. Numerous methods have been proposed to mitigate tracking error. While these trajectory-tracking methods are efficient for rigid systems, many excite unwanted vibration when applied to flexible systems, leading to tracking error. This paper analyzes a modification of input shaping, which has been primarily used to limit residual vibration for point-to-point motion of flexible systems. Standard input shaping is modified using error-limiting constraints to reduce transient tracking error for the duration of the system’s motion. This method is simulated with trajectory inputs constructed using line segments and Catmull-Rom splines. Error-limiting commands are shown to improve both spatial and temporal tracking performance and can be made robust to modeling errors in natural frequency.


2015 ◽  
Vol 23 (2) ◽  
pp. 679-686 ◽  
Author(s):  
Pieter Janssens ◽  
Wannes Van Loock ◽  
Goele Pipeleers ◽  
Jan Swevers

2005 ◽  
Vol 38 (1) ◽  
pp. 187-192
Author(s):  
Gianluca Antonelli ◽  
Stefano Chiaverini ◽  
Marco Palladino ◽  
Gian Paolo Gerio ◽  
Gerardo Renga

2014 ◽  
Vol 543-547 ◽  
pp. 1397-1400 ◽  
Author(s):  
Wen Zhe Wang ◽  
Shi Yue Liu ◽  
Qing Bo Geng ◽  
Qing Fei

This paper developed a 6-DOF (degree of freedom) PC-Based robotic arm system. The system mainly include in software platform and servo control card, servo control card based on microcontroller STC12C5A60S2 was designed to drive the servomotor connected with each joint of robot. The software was implemented by combining MFC with OpenGL. By using the OpenGL functions, the software is able to draw and simulate the 3D kinematic scheme of the robot, it also provides 3D motion planning simulation feature. With the help of simulation in the GUI, users can visualize the manipulator motion planning. Furthermore, user also can control the real robotic arm through this software. Finally, point-to-point motion and continuous path motion are all tested in simulation and real robot control. The entire system has been successfully implemented.


Sign in / Sign up

Export Citation Format

Share Document