Gas path fault diagnostics using a hybrid intelligent method for industrial gas turbine engines

Author(s):  
D. F. Amare ◽  
T. B. Aklilu ◽  
S. I. Gilani
Author(s):  
J. M. Vaught

The American National Standards Institute (ANSI) required that the source testing Standard on Measurement of Exhaust Emissions from Stationary Gas Turbine Engines, B133.9, be brought up to date with today’s regulatory requirements and best measurement technology. The criteria for the design of the Standard along with its content and format are discussed. The selection of measurement methods for gaseous components, smoke, and particulates emitted by present day emission controlled industrial gas turbine engines is presented.


Author(s):  
Nanahisa Sugiyama

This paper describes a real-time or faster-than-real-time simulation of gas turbine engines, using an ultra high speed, multi-processor digital computer, designated the AD100. It is shown that the frame time is reduced significantly without any loss of fidelity of a simulation. The simulation program is aimed at a high degree of flexibility to allow changes in engine configuration. This makes it possible to simulate various types of gas turbine engines, including jet engines, gas turbines for vehicles and power plants, in real-time. Some simulation results for an intercooled-reheat type industrial gas turbine are shown.


Author(s):  
D. A. Groghan ◽  
C. L. Miller

The FT9 Marine Gas Turbine development program was initiated in August 1973 by the Naval Sea Systems Command to fulfill, in part, the requirement for a family of gas turbine engines ranging in power from 1000 to 30,000 hp. The FT9 satisfied the requirement to develop a 30,000 hp class marine gas turbine. The FT9 is a derivative of the Pratt & Whitney Aircraft JT9D engine, which powers Boeing 747, DC-10 and A300 aircraft, and of the FT4 industrial gas turbine engine. The FT9 specification also required development of an on-line engine condition monitoring system. A rigorous development test program showed the FT9 has met all specified U.S. Navy requirements and demonstrated its suitability for use in U.S. Navy combatant ships.


1995 ◽  
Vol 117 (3) ◽  
pp. 563-568
Author(s):  
J. M. Vaught

The American National Standards Institute (ANSI) required that the source testing Standard on Measurement of Exhaust Emissions from Stationary Gas Turbine Engines, B133.9, be brought up to date with today’s regulatory requirements and best measurement technology. The criteria for the design of the Standard along with its content and format are discussed. The selection of measurement methods for gaseous components, smoke, and particulates emitted by present-day emission-controlled industrial gas turbine engines is presented.


Author(s):  
C. Poole ◽  
A. G. Salsi ◽  
F. S. Bhinder ◽  
S. Kumar

This paper describes a computer program which has been developed to simulate industrial gas turbine engines to aid the design and application of fuel controllers. It explains the program structure and, as an example, gives the application of the program to the modelling of a simple two shaft industrial gas turbine engine. A brief discussion of the value of the implementation language, C++, is also given.


Author(s):  
M Grujicic ◽  
R Galgalikar ◽  
JS Snipes ◽  
S Ramaswami

This paper addresses the problem of materials selection for springs used to clamp an inner shroud segment to the outer shroud block in utility and industrial gas turbine engines. Clamping is achieved through the application of an initial compressive load to the spring. However, since the spring is subjected to high temperature and oxidizing conditions, it experiences creep and surface oxidation. Both of these processes result in the loss of the compressive load within the spring with time. A material selection procedure is developed, which identifies optimum materials (design variables), with respect to the minimum loss in the clamping-spring load (objective function) for a given set of geometrical constraints (i.e. maximum size of the spring is constrained by the outer-shroud cavity which houses the spring) and functional constraints (force retention should persist over the expected life of the inner-shroud segment). Two material selection procedures are devised: (a) one, fairly rigorous and computationally intensive, based on the use of a finite element analysis; and (b) the other, less rigorous but computationally less expensive, based on the use of a simplified analytical/numerical procedure. In the absence of oxidation, the two approaches yielded different, but mutually consistent, results with identical ranking of the clamping-force candidate materials. The inclusion of the oxidation effects showed that oxidation-induced loss in the spring material increases the extent of clamping-force relaxation and may affect the ranking of the candidate materials.


Author(s):  
Janel N. Nixon ◽  
Mark Waters ◽  
Dimitri Mavris

All industrial power systems are influenced by ambient parameters, and power plant output fluctuates significantly with changes in ambient conditions such as pressure, temperature, and humidity. The use of an inlet conditioning system is frequently proposed to lower the temperatures at the inlet of an industrial gas turbine engine, particularly in hot and arid regions. To evaluate such a system, a robust design methodology has been developed whereby ambient operating conditions and their impacts can be modeled easily and accurately. Ambient models are developed that are specific to a given locale and consider daily and annual variations in temperature and humidity. A robust design is one that has a high probability of meeting design goals, and at the same time, is insensitive to operational uncertainty. This paper addresses the possibility of enhancing the robustness of gas turbine engines by means of technology additions. The results of this study have been developed in part using the probabilistic analysis techniques developed at the Aerospace System Design Laboratory at Georgia Tech, and they demonstrate how differing ambient conditions can affect the decision to install an inlet conditioning system with the engine [1]. An industrial gas turbine power plant is modeled, and the ambient models are integrated with the engine model and used to predict the overall impact on power plant net revenue over a year-long period of operation. This is done at four specified locales each with widely different ambient characteristics.


Sign in / Sign up

Export Citation Format

Share Document