Investigation of machining performance in die-sinking electrical discharge machining of pentagonal micro-cavities using cylindrical electrode

Author(s):  
Shrikant Vidya ◽  
Reeta Wattal ◽  
P Venkateswara Rao
2021 ◽  
Vol 11 (5) ◽  
pp. 2084 ◽  
Author(s):  
Kamonpong Jamkamon ◽  
Pichai Janmanee

The performance of electrical discharge machining for drilling holes decreases with machining depth because the conventional flushing and electrode cannot completely eliminate debris particles from the machining area. In this study, a modified electrode for self-flushing in the electrical discharge machining process with a step cylindrical shape was designed to improve machining performance for deep hole drilling. The experimental results of the step cylindrical electrode showed that the material removal rate increased by approximately 215.7%, 203.8%, and 130.4%, and the electrode wear ratio decreased by approximately 47.2%, 63.1%, and 37.3%, when compared with a conventional electrode for the diameters of 6, 9, and 12 mm, respectively. In addition, the gap clearance and concavity of the side wall of the drilled hole was reduced with the step cylindrical electrode. The limited high flank of the electrode led to an increase in the escape area of the debris that was partially removed from the machining area, and the limited secondary spark on the side wall of the electrode resulted in a reduction in machining time.


2015 ◽  
Vol 656-657 ◽  
pp. 335-340 ◽  
Author(s):  
Fang Pin Chuang ◽  
Yan Cherng Lin ◽  
Hsin Min Lee ◽  
Han Ming Chow ◽  
A. Cheng Wang

The environment issue and green machining technique have been induced intensive attention in recent years. It is urgently need to develop a new kind dielectric to meet the requirements for industrial applications. The aim of this study is to develop a novel dielectric using gas media immersed in deionized water for electrical discharge machining (EDM). The developed machining medium for EDM can fulfill the environmentally friendly issue and satisfy the demand of high machining performance. The experiments were conducted by this developed medium to investigate the effects of machining parameters on machining characteristics in terms of material removal rate (MRR) and surface roughness. The developed EDM medium revealed the potential to obtain a stabilizing progress with excellent machining performance and environmentally friendly feature.


Author(s):  
Anshuman Kumar Sahu ◽  
Joji Thomas ◽  
Siba Sankar Mahapatra

Electrical discharge machining (EDM) is a thermo-electrical process that can be conveniently utilized for generating complex shaped profiles on hard-to-machine conductive materials using metallic tool electrodes. In this work, composite tools made of copper-tungsten-boron carbide (Cu-W-B4C) manufactured by powder metallurgy (PM) route are used during machining of titanium alloy (Ti6Al4V). The effect of four input machining parameters viz. current, pulse-on-time, duty cycle and percentage of tungsten and boron carbide on material removal rate (MRR), tool wear rate (TWR) and surface roughness (Ra) is studied. A novel meta-heuristic approach such as simple optimization (SOPT) algorithm has been used for single and multi-objective optimization. The pareto-optimal solutions obtained by SOPT have been ranked by VIKOR method to find out the best suitable optimal solution. Analysis of experimental data suggests vital information for controlling the machining parameters to improve the machining performance.


Author(s):  
Ahsan Ali Khan ◽  
Marina Binti Abu Bakar ◽  
Muataz Hazza Faizi Al-Hazza ◽  
Mohd Radzi Haji Che Daud ◽  
AKM Mohiuddin

Sign in / Sign up

Export Citation Format

Share Document