Machining Feasibility of a New Developed Medium in Electrical Discharge Machining

2015 ◽  
Vol 656-657 ◽  
pp. 335-340 ◽  
Author(s):  
Fang Pin Chuang ◽  
Yan Cherng Lin ◽  
Hsin Min Lee ◽  
Han Ming Chow ◽  
A. Cheng Wang

The environment issue and green machining technique have been induced intensive attention in recent years. It is urgently need to develop a new kind dielectric to meet the requirements for industrial applications. The aim of this study is to develop a novel dielectric using gas media immersed in deionized water for electrical discharge machining (EDM). The developed machining medium for EDM can fulfill the environmentally friendly issue and satisfy the demand of high machining performance. The experiments were conducted by this developed medium to investigate the effects of machining parameters on machining characteristics in terms of material removal rate (MRR) and surface roughness. The developed EDM medium revealed the potential to obtain a stabilizing progress with excellent machining performance and environmentally friendly feature.

Author(s):  
Anshuman Kumar Sahu ◽  
Joji Thomas ◽  
Siba Sankar Mahapatra

Electrical discharge machining (EDM) is a thermo-electrical process that can be conveniently utilized for generating complex shaped profiles on hard-to-machine conductive materials using metallic tool electrodes. In this work, composite tools made of copper-tungsten-boron carbide (Cu-W-B4C) manufactured by powder metallurgy (PM) route are used during machining of titanium alloy (Ti6Al4V). The effect of four input machining parameters viz. current, pulse-on-time, duty cycle and percentage of tungsten and boron carbide on material removal rate (MRR), tool wear rate (TWR) and surface roughness (Ra) is studied. A novel meta-heuristic approach such as simple optimization (SOPT) algorithm has been used for single and multi-objective optimization. The pareto-optimal solutions obtained by SOPT have been ranked by VIKOR method to find out the best suitable optimal solution. Analysis of experimental data suggests vital information for controlling the machining parameters to improve the machining performance.


2009 ◽  
Vol 620-622 ◽  
pp. 711-714 ◽  
Author(s):  
Li Li ◽  
Guang Ming Yuan ◽  
Zong Wei Niu ◽  
Rong Guo Hou

Sintered NdFeB permanent magnet is widely used in many areas because of its excellent magnet property. In this study, the machining parameters of electrical discharge machining (EDM) are varied to study the effects of electrical discharge energy on material removal rate and surface roughness of NdFeB magnet. Moreover, the micro-cracks on the machined surface induced by EDM are also examined. The experimental results reveal that the MRR increases with the electrical discharge energy. The number of surface cracks on the machined surface increases with the enhancement of discharge energy Thus, using EDM process to machine sintered NdFeB magnet depends on setting the machining parameters to prevent surface crack.


Author(s):  
Murahari Kolli ◽  
Devaraj Aruri ◽  
Kumar Adepu

Aluminum based hybrid composites are advanced materials having the properties of high hardness, superior wear resistance, strength, high elevated temperature and low thermal expansion coefficient. These hybrid composites are widely used in industries like automobile and aerospace. In this present paper 6061-T6 Aluminum alloy reinforced with SiC and Gr particles, hybrid composites are fabricated by using Friction stir processing (FSP) technique. It prevents the further development of hybrid composites for machining by nonconventional methods like water jet and laser cutting process. Electrical discharge machining (EDM) is used for machining the complex shapes of the material. This paper presents an overview of EDM studies conducted on the Al-SiC/Gr hybrid composites using a copper electrode in EDM. The EDM experiment machining parameters such as the dielectric fluid, peak current, pulse on, pulse off times are changed to explore their effects on machining performance, material removal rate (MRR), Tool wear rate (TWR), and surface roughness (SR). It is observed that the MRR and SR of the Al-SiC/Gr hybrid composites increase with an increase in the current.


Mechanik ◽  
2018 ◽  
Vol 91 (3) ◽  
pp. 220-222
Author(s):  
Rafał Świercz ◽  
Dorota Oniszczuk-Świercz ◽  
Rafał Nowicki

This article presents the influence of process parameters of wire electrical discharge machining using coated brass on the surface roughness and material removal rate of Inconel 718. Studies were conducted by design of the experiment. Based on the survey developed mathematical models which allow selecting the most favorable machining parameters depending on the desired process performance and quality features of the surface texture.


2018 ◽  
Vol 7 (3.34) ◽  
pp. 256
Author(s):  
S Rajamanickam ◽  
R Palani ◽  
V Sathyamoorthy ◽  
Muppala Jagadeesh Varma ◽  
Shaik Shaik Mahammad Althaf ◽  
...  

As on today, Electrical Discharge Machining (EDM) is world famous unconventional machining process for electrically conductive materials. In this project work, Ti-6Al-4V is performed in electrical discharge machining using differently shaped (circular and convex) copper electrode. The machining parameters considered are the pulse on- time, pulse off-time, voltage and current to investigate machining characteristics like material removal rate and tool wear rate. Taguchi method is applied to frame experimental design. Ti-6Al-4V finds wide usage in industrial applications such as marine, aerospace, bio-medical and so on. 


Author(s):  
Ashwani Kharola

This paper considers effect of variation in value of Discharge current on different process parameters of Die Sinking EDM. The parameters considered were Material removal rate (MRR), Tool removal rate (TRR), Surface roughness (Ra) and Time (for machining required depth of cut). A total of 32 experiments were conducted on four different hard steels i.e. Die steel D3, En-8, En-19 and Stainless steel (SS-AISI-440C). The Copper and Aluminium electrodes brazed with mild steel were used for machining. The four different values of current i.e. 6A, 9A, 12A and 15A were considered for the study. The experimental results shows the relationship between MRR, TRR, Ra and Time with variation in magnitude of discharge current. This study also illustrates the relationship among different process parameter considered in the study. The results are shown with the help of graphs and tables.


Sign in / Sign up

Export Citation Format

Share Document