Nonlinear dynamics of a class of derivative controlled Chua’s circuit

2017 ◽  
Vol 6 (2) ◽  
pp. 827-834 ◽  
Author(s):  
Saumendra Sankar De Sarkar ◽  
Saumen Chakraborty
1996 ◽  
Vol 06 (11) ◽  
pp. 2087-2096 ◽  
Author(s):  
VALERY P. PONOMARENKO ◽  
VALERY V. MATROSOV

Dynamic regimes and their bifurcations in the Chua’s circuit with a modified smooth nonlinearity are investigated. The characteristic feature of this modified Chua’s circuit is that it may have more than three equilibrium states. Stability of the equilibrium states and oscillatory regimes are analyzed. The curves corresponding to the bifurcations of the regimes are plotted on the plane of two parameters where regions of chaotic motions are identified. It is found that there exist chaotic multi-spiral attractors. The evolution of dynamics and the effects accompanying the variation of the parameters of the system are considered.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Manuel De la Sen ◽  
Sinan Deniz ◽  
Hasan Sözen

AbstractChua’s circuit is an electronic circuit that exhibits nonlinear dynamics. In this paper, a new model for Chua’s circuit is obtained by transforming the classical model of Chua’s circuit into novel forms of various fractional derivatives. The new obtained system is then named fractional Chua’s circuit model. The modified system is then analyzed by the optimal perturbation iteration method. Illustrations are given to show the applicability of the algorithms, and effective graphics are sketched for comparison purposes of the newly introduced fractional operators.


1993 ◽  
Vol 03 (02) ◽  
pp. 645-668 ◽  
Author(s):  
A. N. SHARKOVSKY ◽  
YU. MAISTRENKO ◽  
PH. DEREGEL ◽  
L. O. CHUA

In this paper, we consider an infinite-dimensional extension of Chua's circuit (Fig. 1) obtained by replacing the left portion of the circuit composed of the capacitance C2 and the inductance L by a lossless transmission line as shown in Fig. 2. As we shall see, if the remaining capacitance C1 is equal to zero, the dynamics of this so-called time-delayed Chua's circuit can be reduced to that of a scalar nonlinear difference equation. After deriving the corresponding 1-D map, it will be possible to determine without any approximation the analytical equation of the stability boundaries of cycles of every period n. Since the stability region is nonempty for each n, this proves rigorously that the time-delayed Chua's circuit exhibits the "period-adding" phenomenon where every two consecutive cycles are separated by a chaotic region.


1994 ◽  
Vol 04 (02) ◽  
pp. 117-159 ◽  
Author(s):  
LEON O. CHUA

More than 200 papers, two special issues (Journal of Circuits, Systems, and Computers, March, June, 1993, and IEEE Trans. on Circuits and Systems, vol. 40, no. 10, October, 1993), an International Workshop on Chua’s Circuit: chaotic phenomena and applica tions at NOLTA’93, and a book (edited by R.N. Madan, World Scientific, 1993) on Chua’s circuit have been published since its inception a decade ago. This review paper attempts to present an overview of these timely publications, almost all within the last six months, and to identify four milestones of this very active research area. An important milestone is the recent fabrication of a monolithic Chua’s circuit. The robustness of this IC chip demonstrates that an array of Chua’s circuits can also be fabricated into a monolithic chip, thereby opening the floodgate to many unconventional applications in information technology, synergetics, and even music. The second milestone is the recent global unfolding of Chua’s circuit, obtained by adding a linear resistor in series with the inductor to obtain a canonical Chua’s circuit— now generally referred to as Chua’s oscillator. This circuit is most significant because it is structurally the simplest (it contains only 6 circuit elements) but dynamically the most complex among all nonlinear circuits and systems described by a 21-parameter family of continuous odd-symmetric piecewise-linear vector fields. The third milestone is the recent discovery of several important new phenomena in Chua’s circuits, e.g., stochastic resonance, chaos-chaos type intermittency, 1/f noise spectrum, etc. These new phenomena could have far-reaching theoretical and practical significance. The fourth milestone is the theoretical and experimental demonstration that Chua’s circuit can be easily controlled from a chaotic regime to a prescribed periodic or constant orbit, or it can be synchronized with 2 or more identical Chua’s circuits, operating in an oscillatory, or a chaotic regime. These recent breakthroughs have ushered in a new era where chaos is deliberately created and exploited for unconventional applications, e.g. secure communication.


Sign in / Sign up

Export Citation Format

Share Document