Dual estimation and combination of state and output feedback based robust adaptive NMBC control scheme on non-linear process

2018 ◽  
Vol 7 (2) ◽  
pp. 725-743 ◽  
Author(s):  
Atanu Panda ◽  
Shinjinee Goswami ◽  
Rames C. Panda
Author(s):  
JIANPING CAI ◽  
LUJUAN SHEN ◽  
FUZHEN WU

We consider a class of uncertain non-linear systems preceded by unknown backlash-like hysteresis, which is modelled by a differential equation. We propose a new state feedback robust adaptive control scheme using a backstepping technique and properties of the differential equation. In this control scheme, we construct a new continuous function to design an estimator to estimate the unknown constant parameters and the unknown bound of a ‘disturbance-like’ term. The transient performance of the output tracking error can be guaranteed by the introduction of pre-estimates of the unknown parameters in our controller together with update laws. We do not require bounds on the ‘disturbance-like’ term or unknown system parameters in this scheme. The global stability of the closed-loop system can be proved.


Author(s):  
H Schwarz

This paper deals with the control of hydrostatic drives on the basis of bilinear models. It is shown that by using bilinear models a considerably better approximation of the non-linear behaviour of hydraulic drives can be achieved compared with common linear models. The bilinear model approach gives rise to control results valid not only for fixed operating points but also for the complete operation range of the drives. In particular, an output feedback using a canonical observer and quadratic state feedback is proposed. A separation theorem for this non-linear control scheme similar to that for linear systems is proved, i.e. the dynamics of the observer and of the controlled plant are adjustable separately.


Author(s):  
Mark O Sullivan ◽  
Carl T Woods ◽  
James Vaughan ◽  
Keith Davids

As it is appreciated that learning is a non-linear process – implying that coaching methodologies in sport should be accommodative – it is reasonable to suggest that player development pathways should also account for this non-linearity. A constraints-led approach (CLA), predicated on the theory of ecological dynamics, has been suggested as a viable framework for capturing the non-linearity of learning, development and performance in sport. The CLA articulates how skills emerge through the interaction of different constraints (task-environment-performer). However, despite its well-established theoretical roots, there are challenges to implementing it in practice. Accordingly, to help practitioners navigate such challenges, this paper proposes a user-friendly framework that demonstrates the benefits of a CLA. Specifically, to conceptualize the non-linear and individualized nature of learning, and how it can inform player development, we apply Adolph’s notion of learning IN development to explain the fundamental ideas of a CLA. We then exemplify a learning IN development framework, based on a CLA, brought to life in a high-level youth football organization. We contend that this framework can provide a novel approach for presenting the key ideas of a CLA and its powerful pedagogic concepts to practitioners at all levels, informing coach education programs, player development frameworks and learning environment designs in sport.


Author(s):  
Kejie Gong ◽  
Ying Liao ◽  
Yafei Mei

This article proposed an extended state observer (ESO)–based output feedback control scheme for rigid spacecraft pose tracking without velocity feedback, which accounts for inertial uncertainties, external disturbances, and control input constraints. In this research, the 6-DOF tracking error dynamics is described by the exponential coordinates on SE(3). A novel continuous finite-time ESO is proposed to estimate the velocity information and the compound disturbance, and the estimations are utilized in the control law design. The ESO ensures a finite-time uniform ultimately bounded stability of the observation states, which is proved utilizing the homogeneity method. A non-singular finite-time terminal sliding mode controller based on super-twisting technology is proposed, which would drive spacecraft tracking the desired states. The other two observer-based controllers are also proposed for comparison. The superiorities of the proposed control scheme are demonstrated by theory analyses and numerical simulations.


Sign in / Sign up

Export Citation Format

Share Document