scholarly journals Vehicle–track–tunnel dynamic interaction: a finite/infinite element modelling method

Author(s):  
Lei Xu ◽  
Wanming Zhai

AbstractThe aim of this study is to develop coupled matrix formulations to characterize the dynamic interaction between the vehicle, track, and tunnel. The vehicle–track coupled system is established in light of vehicle–track coupled dynamics theory. The physical characteristics and mechanical behavior of tunnel segments and rings are modeled by the finite element method, while the soil layers of the vehicle–track–tunnel (VTT) system are modeled as an assemblage of 3-D mapping infinite elements by satisfying the boundary conditions at the infinite area. With novelty, the tunnel components, such as rings and segments, have been coupled to the vehicle–track systems using a matrix coupling method for finite elements. The responses of sub-systems included in the VTT interaction are obtained simultaneously to guarantee the solution accuracy. To relieve the computer storage and save the CPU time for the large-scale VTT dynamics system with high degrees of freedoms, a cyclic calculation method is introduced. Apart from model validations, the necessity of considering the tunnel substructures such as rings and segments is demonstrated. In addition, the maximum number of elements in the tunnel segment is confirmed by numerical simulations.

Author(s):  
Wen Zhang ◽  
Wenliang Wang ◽  
Hao Wang ◽  
Jiong Tang

A method for dynamic analysis of flexible bladed-disk/shaft coupled systems is presented in this paper. Being independant substructures first, the rigid-disk/shaft and each of the bladed-disk assemblies are analyzed separately in a centrifugal force field by means of the finite element method. Then through a modal synthesis approach the equation of motion for the integral system is derived. In the vibration analysis of the rotating bladed-disk substructure, the geometrically nonlinear deformation is taken into account and the rotationally periodic symmetry is utilized to condense the degrees of freedom into one sector. The final equation of motion for the coupled system involves the degrees of freedom of the shaft and those of only one sector of each of the bladed-disks, thereby reducing the computer storage. Some computational and experimental results are given.


Author(s):  
Iarly Vanderlei da Silveira ◽  
Lineu José Pedroso ◽  
Giuliano Santa Marotta

abstract: This work aims to verify the influence of the foundation and the reservoir on the dynamic behavior of concrete gravity dams in terms of the natural frequencies, vibration modes for a free vibration analysis; and in terms of maximum displacements and maximum stresses at singular points of the structure for a seismic excitation. The dam-reservoir-foundation interaction was investigated through modal and transient analysis by the finite element method via ANSYS APDL software. For this study, we used a typical Brazilian dam profile and compatible data from a Brazilian earthquake for the seismic excitation. The results showed the influence of the reservoir and the foundation on the natural frequencies in the coupled system, as well as its repercussions on the response of the dam under seismic excitation.


2018 ◽  
Author(s):  
Chuncheng Guo ◽  
Mats Bentsen ◽  
Ingo Bethke ◽  
Mehmet Ilicak ◽  
Jerry Tjiputra ◽  
...  

Abstract. A new computationally efficient version of the Norwegian Earth System Model (NorESM) is presented. This new version (here termed NorESM1-F) runs about 2.5 times faster (e.g. 90 model years per day on current hardware) than the version that contributed to the fifth phase of the Coupled Model Intercomparison project (CMIP5), i.e., NorESM1-M, and is therefore particularly suitable for multi-millennial paleoclimate and carbon cycle simulations or large ensemble simulations. The speedup is primarily a result of using a prescribed atmosphere aerosol chemistry and a tripolar ocean-sea ice horizontal grid configuration that allows an increase of the ocean-sea ice component time steps. Ocean biogeochemistry can be activated for fully coupled and semi-coupled carbon cycle applications. This paper describes the model and evaluates its performance using observations and NorESM1-M as benchmarks. The evaluation emphasises model stability, important large-scale features in the ocean and sea ice components, internal variability in the coupled system, and climate sensitivity. Simulation results from NorESM1-F in general agree well with observational estimates, and show evident improvements over NorESM1-M, for example, in the strength of the meridional overturning circulation and sea ice simulation, both important metrics in simulating past and future climates. Whereas NorESM1-M showed a slight global cool bias in the upper oceans, NorESM1-F exhibits a global warm bias. In general, however, NorESM1-F has more similarities than dissimilarities compared to NorESM1-M, and some biases and deficiencies known in NorESM1-M remain.


Author(s):  
Antonios Fragkogios ◽  
Georgios K. D. Saharidis

Operations Research and Mathematical Programming together with Information Science and Technology are tools used to solve various problems in the modern economic environment. This chapter addresses the Benders Decomposition method, which is used for the solution of problems of Operations Research. This method, applied to certain large-scale mathematical problems, can make their solution feasible (if they cannot be solved with another procedure) or can accelerate the solution process in terms of CPU time. The authors provide a thorough presentation of how the decomposition of a problem is made and the Benders algorithm is applied for its solution. Main purpose of this chapter is to analyze the recent studies that address the method's weaknesses and accelerate its application for the faster solution of mathematical problems. A large number of papers is presented and the contribution of each one of them to the improvement of the method is described.


Author(s):  
Fumie Costen ◽  
Akos Balasko

The computational architecture of Enabling Grids for E-sciencE is introduced as it made our code porting very challenging, and the discussion presented is directly applicable to EGEE users. The final solution to the code poring problem is proposed, and its performance is examined. The solution to this problem be generally faced in the other large scale computation and so is applicable to users of other HPC facilities. This chapter gives a hint to those who have difficulties in applications with heavy data Input/Output (I/O) under the computational environment whose weak point is the data I/O.


2019 ◽  
Vol 12 (1) ◽  
pp. 343-362 ◽  
Author(s):  
Chuncheng Guo ◽  
Mats Bentsen ◽  
Ingo Bethke ◽  
Mehmet Ilicak ◽  
Jerry Tjiputra ◽  
...  

Abstract. A new computationally efficient version of the Norwegian Earth System Model (NorESM) is presented. This new version (here termed NorESM1-F) runs about 2.5 times faster (e.g., 90 model years per day on current hardware) than the version that contributed to the fifth phase of the Coupled Model Intercomparison project (CMIP5), i.e., NorESM1-M, and is therefore particularly suitable for multimillennial paleoclimate and carbon cycle simulations or large ensemble simulations. The speed-up is primarily a result of using a prescribed atmosphere aerosol chemistry and a tripolar ocean–sea ice horizontal grid configuration that allows an increase of the ocean–sea ice component time steps. Ocean biogeochemistry can be activated for fully coupled and semi-coupled carbon cycle applications. This paper describes the model and evaluates its performance using observations and NorESM1-M as benchmarks. The evaluation emphasizes model stability, important large-scale features in the ocean and sea ice components, internal variability in the coupled system, and climate sensitivity. Simulation results from NorESM1-F in general agree well with observational estimates and show evident improvements over NorESM1-M, for example, in the strength of the meridional overturning circulation and sea ice simulation, both important metrics in simulating past and future climates. Whereas NorESM1-M showed a slight global cool bias in the upper oceans, NorESM1-F exhibits a global warm bias. In general, however, NorESM1-F has more similarities than dissimilarities compared to NorESM1-M, and some biases and deficiencies known in NorESM1-M remain.


2014 ◽  
Vol 18 (suppl.1) ◽  
pp. 179-188 ◽  
Author(s):  
Aleksandar Sedmak ◽  
Ljubica Milovic ◽  
Mirko Pavisic ◽  
Pejo Konjatic

Finite element modelling of steady state creep process has been described. Using an analogy of visco-plastic problem with a described procedure, the finite element method has been used to calculate steady state stresses and strains in 2D problems. An example of application of such a procedure have been presented, using real life problem - cylindrical pipe with longitudinal crack at high temperature, under internal pressure, and estimating its residual life, based on the C*integral evaluation.


2012 ◽  
Vol 11 (1) ◽  
pp. 249-270 ◽  
Author(s):  
David Pugal ◽  
Pavel Solin ◽  
Kwang J. Kim ◽  
Alvo Aabloo

AbstractWe are concerned with a model of ionic polymer-metal composite (IPMC) materials that consists of a coupled system of the Poisson and Nernst-Planck equations, discretized by means of the finite element method (FEM). We show that due to the transient character of the problem it is efficient to use adaptive algorithms that are capable of changing the mesh dynamically in time. We also show that due to large qualitative and quantitative differences between the two solution components, it is efficient to approximate them on different meshes using a novel adaptive multimeshhp-FEM. The study is accompanied with numerous computations and comparisons of the adaptive multimeshhp-FEM with several other adaptive FEM algorithms.


2018 ◽  
Vol 18 (09) ◽  
pp. 1850107 ◽  
Author(s):  
Yan-An Gao ◽  
Qing-Shan Yang ◽  
Yun Dong

A three-dimensional (3D) pedestrian–structure interaction (PSI) system based on the biomechanical bipedal model is presented for general applications. The pedestrian is modeled by a bipedal mobile system with one lump mass and two compliant legs, which comprise damping and spring elements. The continuous gaits of the pedestrian are maintained by a self-driven walking kinetic energy, which is a new driven mechanism for the mobile unit. This self-driven mechanism enables the pedestrian to operate at a varying total energy level, as an important component for further modeling of the crowd-structure dynamic interaction. Numerical studies show that the pedestrian walking on the structure leads to a reduction in the natural frequency, but an increase in the damping ratio of the structure. This model can also reproduce the reaction forces between the feet and structure, similar to those measured in the field. In addition, the proposed model can well describe the 3D pedestrian–structure dynamic interaction. It is recommended for use in further study of more complicated scenarios such as the dynamic interaction between a large scale kinetic crowd and slender footbridge.


Author(s):  
Jianhu Nie ◽  
David A. Hopkins ◽  
Yitung Chen ◽  
Hsuan-Tsung Hsieh

A 2D/3D object-oriented program with h-type adaptive mesh refinement method is developed for finite element analysis of the multi-physics applications including heat transfer. A framework with some basic classes that enable the code to be built accordingly to the type of problem to be solved is proposed. The program consists of different modules and classes, which ease code development for large-scale complex systems, code extension and program maintenance. The developed program can be used as a “test-bed” program for testing new analysis techniques and algorithms with high extensibility and flexibility. The overall mesh refinement causes the CPU time cost to greatly increase as the mesh is refined. However, the CPU time cost does not increase very much with the increase of the level of h-adaptive mesh refinement. The CPU time cost can be saved by up to 90%, especially for the simulated system with a large number of elements and nodes.


Sign in / Sign up

Export Citation Format

Share Document