scholarly journals An enriched count of the bitangents to a smooth plane quartic curve

2021 ◽  
Vol 8 (2) ◽  
Author(s):  
Hannah Larson ◽  
Isabel Vogt
Keyword(s):  
2021 ◽  
Vol 27 (3) ◽  
Author(s):  
Soheyla Feyzbakhsh ◽  
Chunyi Li

AbstractLet (X, H) be a polarized K3 surface with $$\mathrm {Pic}(X) = \mathbb {Z}H$$ Pic ( X ) = Z H , and let $$C\in |H|$$ C ∈ | H | be a smooth curve of genus g. We give an upper bound on the dimension of global sections of a semistable vector bundle on C. This allows us to compute the higher rank Clifford indices of C with high genus. In particular, when $$g\ge r^2\ge 4$$ g ≥ r 2 ≥ 4 , the rank r Clifford index of C can be computed by the restriction of Lazarsfeld–Mukai bundles on X corresponding to line bundles on the curve C. This is a generalization of the result by Green and Lazarsfeld for curves on K3 surfaces to higher rank vector bundles. We also apply the same method to the projective plane and show that the rank r Clifford index of a degree $$d(\ge 5)$$ d ( ≥ 5 ) smooth plane curve is $$d-4$$ d - 4 , which is the same as the Clifford index of the curve.


1945 ◽  
Vol 35 ◽  
pp. 10-13 ◽  
Author(s):  
W. L. Edge

The pencil of quartic curveswhere x, y, z are homogeneous coordinates in a plane, was encountered by Ciani [Palermo Rendiconli, Vol. 13, 1899] in his search for plane quartic curves that were invariant under harmonic inversions. If x, y, z undergo any permutation the ternary quartic form on the left of (1) is not altered; nor is it altered if any, or all, of x, y, z be multiplied by −1. There thus arises an octahedral group G of ternary collineations for which every curve of the pencil is invariant.Since (1) may also be writtenthe four linesare, as Ciani pointed out, bitangents, at their intersections with the conic C whose equation is x2 + y2 + z2 = 0, to every quartic of the pencil. The 16 base points of the pencil are thus all accounted for—they consist of these eight contacts counted twice—and this set of points must of course be invariant under G. Indeed the 4! collineations of G are precisely those which give rise to the different permutations of the four lines (2), a collineation in a plane being determined when any four non-concurrent lines and the four lines which are to correspond to them are given. The quadrilateral formed by the lines (2) will be called q.


1963 ◽  
Vol 3 (3) ◽  
pp. 325-339 ◽  
Author(s):  
M. Papadopoulos

AbstractA crack is assumed to be the union of two smooth plane surfaces of which various parts may be in contact, while the remainder will not. Such a crack in an isotropic elastic solid is an obstacle to the propagation of plane pulses of the scalar and vector velocity potential so that both reflected and diffracted fields will be set up. In spite of the non-linearity which is present because the state of the crack, and hence the conditions to be applied at the surfaces, is a function of the dependent variables, it is possible to separate incident step-function pulses into either those of a tensile or a compressive nature and the associated scattered field may then be calculated. One new feature which arises is that following the arrival of a tensile field which tends to open up the crack there is necessarily a scattered field which causes the crack to close itself with the velocity of free surface waves.


1924 ◽  
Vol 22 (2) ◽  
pp. 189-199
Author(s):  
F. Bath

The connexion between the conditions for five lines of S4(i) to lie upon a quadric threefold,and (ii) to be chords of a normal quartic curve,leads to an apparent contradiction. This difficulty is explained in the first paragraph below and, subsequently, two investigations are given of which the first uses, mainly, properties of space of three dimensions.


2021 ◽  
pp. 359-454
Author(s):  
Kayode Ayinde ◽  
Hamidu Abimbola Bello ◽  
Rauf Ibrahim Rauf ◽  
Omokova Mary Attah ◽  
Ugochinyere Ihuoma Nwosu ◽  
...  

1927 ◽  
Vol 1 (1) ◽  
pp. 31-38 ◽  
Author(s):  
H. W. Richmond

In comparison with the general plane quartic on the one hand, and the curves having either two or three nodes on the other, the uninodal curve has been neglected. Many of its properties may of course be deduced from those of the general quartic in the limiting case when an oval shrinks to a point or when two branches approach and ultimately unite. The modifications of properties of the bitangents are shewn more clearly by Geiser's method, in which these lines are obtained by projecting the lines of a cubic surface from a point on the surface. As the point moves up to and crosses a line on the surface, the quartic acquires a node and certain pairs of bitangents obviously coincide, viz. those obtained by projecting two lines coplanar with that on which the point lies. A nodal quartic curve and its double tangents may also be obtained by projecting a cubic surface which has a conical point from an arbitrary point on the surface. Each of these three methods leads us to the conclusion that, when a quartic acquires a node, twelve of the double tangents coincide two and two and become six tangents from the node, and the other sixteen remain as genuine bitangents: the twelve which coincide are six pairs of a Steiner complex.


Sign in / Sign up

Export Citation Format

Share Document