scholarly journals FAJIT: a fuzzy-based data aggregation technique for energy efficiency in wireless sensor network

Author(s):  
Shashi Bhushan ◽  
Manoj Kumar ◽  
Pramod Kumar ◽  
Thompson Stephan ◽  
Achyut Shankar ◽  
...  

AbstractWireless sensor network (WSN) is used to sense the environment, collect the data, and further transmit it to the base station (BS) for analysis. A synchronized tree-based approach is an efficient approach to aggregate data from various sensor nodes in a WSN environment. However, achieving energy efficiency in such a tree formation is challenging. In this research work, an algorithm named fuzzy attribute-based joint integrated scheduling and tree formation (FAJIT) technique for tree formation and parent node selection using fuzzy logic in a heterogeneous network is proposed. FAJIT mainly focuses on addressing the parent node selection problem in the heterogeneous network for aggregating different types of data packets to improve energy efficiency. The selection of parent nodes is performed based on the candidate nodes with the minimum number of dynamic neighbors. Fuzzy logic is applied in the case of an equal number of dynamic neighbors. In the proposed technique, fuzzy logic is first applied to WSN, and then min–max normalization is used to retrieve normalized weights (membership values) for the given edges of the graph. This membership value is used to denote the degree to which an element belongs to a set. Therefore, the node with the minimum sum of all weights is considered as the parent node. The result of FAJIT is compared with the distributed algorithm for Integrated tree Construction and data Aggregation (DICA) on various parameters: average schedule length, energy consumption data interval, the total number of transmission slots, control overhead, and energy consumption in the control phase. The results demonstrate that the proposed algorithm is better in terms of energy efficiency.

Author(s):  
Ashim Pokharel ◽  
Ethiopia Nigussie

Due to limited energy resources, different design strategies have been proposed in order to achieve better energy efficiency in wireless sensor networks, and organizing sensor nodes into clusters and data aggregation are among such solutions. In this work, secure communication protocol is added to clustered wireless sensor network. Security is a very important requirement that keeps the overall system usable and reliable by protecting the information in the network from attackers. The proposed and implemented AES block cipher provides confidentiality to the communication between nodes and base station. The energy efficiency of LEACH clustered network and with added security is analyzed in detail. In LEACH clustering along with the implemented data aggregation technique 48% energy has been saved compared to not clustered and no aggregation network. The energy consumption overhead of the AES-based security is 9.14%. The implementation is done in Contiki and the simulation is carried out in Cooja emulator using sky motes.


Author(s):  
Ashim Pokharel ◽  
Ethiopia Nigussie

Due to limited energy resources, different design strategies have been proposed in order to achieve better energy efficiency in wireless sensor networks, and organizing sensor nodes into clusters and data aggregation are among such solutions. In this work, secure communication protocol is added to clustered wireless sensor network. Security is a very important requirement that keeps the overall system usable and reliable by protecting the information in the network from attackers. The proposed and implemented AES block cipher provides confidentiality to the communication between nodes and base station. The energy efficiency of LEACH clustered network and with added security is analyzed in detail. In LEACH clustering along with the implemented data aggregation technique 48% energy has been saved compared to not clustered and no aggregation network. The energy consumption overhead of the AES-based security is 9.14%. The implementation is done in Contiki and the simulation is carried out in Cooja emulator using sky motes.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Hedieh Sajedi ◽  
Zahra Saadati

In recent years, wireless sensor networks have been used for various applications such as environmental monitoring, military and medical applications. A wireless sensor network uses a large number of sensor nodes that continuously collect and send data from a specific region to a base station. Data from sensors are collected from the study area in the common scenario of sensor networks. Afterward, sensed data is sent to the base station. However, neighboring sensors often lead to redundancy of data. Transmission of redundant data to the base station consumes energy and produces traffic, because process is run in a large network. Data aggregation was proposed in order to reduce redundancy in data transformation and traffic. The most popular communication protocol in this field is cluster based data aggregation. Clustering causes energy balance, but sometimes energy consumption is not efficient due to the long distance between cluster heads and base station. In another communication protocol, which is based on a tree construction, because of the short distance between the sensors, energy consumption is low. In this data aggregation approach, since each sensor node is considered as one of the vertices of a tree, the depth of tree is usually high. In this paper, an efficient hierarchical hybrid approach for data aggregation is presented. It reduces energy consumption based on clustering and minimum spanning tree. The benefit of combining clustering and tree structure is reducing the disadvantages of previous structures. The proposed method firstly employs clustering algorithm and then a minimum spanning tree is constructed based on cluster heads. Our proposed method was compared to LEACH which is a well-known data aggregation method in terms of energy consumption and the amount of energy remaining in each sensor network lifetime. Simulation results indicate that our proposed method is more efficient than LEACH algorithm considering energy consumption.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Na Li ◽  
Liwen Zhang ◽  
Bing Li

Energy efficiency in wireless sensor network (WSN) is one of the primary performance parameters. For improving the energy efficiency of WSN, we introduce distributed source coding (DSC) and virtual multiple-input multiple-output (MIMO) into wireless sensor network and then propose a new data transmission scheme called DSC-MIMO. DSC-MIMO compresses the source data using distributed source coding before transmitting, which is different from the existing communication schemes. Data compression can reduce the length of the data and improve the energy efficiency. In addition, DSC-MIMO does not require the cluster heads to collect the data of the source nodes, which reduces the frequencies of data transmission and saves energy. In the simulation, we analyze the energy consumption of DSC-MIMO. The results indicate that DSC-MIMO can effectively reduce the energy consumption and improve the energy efficiency of the whole wireless sensor network.


2019 ◽  
Vol 1 (2) ◽  
Author(s):  
Fatemehzahra Gholami Tirkolaei ◽  
Faramarz E. Seraji

<p>Wireless sensor network consists of hundred or thousand sensor nodes that are connected together and work simultaneously to perform some special tasks. The restricted energy of sensor nodes is the main challenge in wireless sensor network as node energy depletion causes node death. Therefore, some techniques should be exerted to reduce energy consumption in these networks. One of the techniques to reduce energy consumptions most effectively is the use of clustering in wireless sensor networks.</p><p>There are various methods for clustering process, among which LEACH is the most common and popular one. In this method, clusters are formed in a probabilistic manner. Among clustering strategies, applying evolutional algorithm and fuzzy logic simultaneously are rarely taken into account. The main attention of previous works was energy consumption and less attention was paid to delay.</p><p>In the present proposed method, clusters are constructed by an evolutional algorithm and a fuzzy system such that in addition to a reduction of energy consumption, considerable reduction of delay is also obtained. The simulation results clearly reveal the superiority of the proposed method over other reported approaches.</p>


2016 ◽  
Vol 2016 ◽  
pp. 1-16 ◽  
Author(s):  
Noor Zaman ◽  
Low Tang Jung ◽  
Muhammad Mehboob Yasin

Wireless Sensor Network (WSN) is known to be a highly resource constrained class of network where energy consumption is one of the prime concerns. In this research, a cross layer design methodology was adopted to design an energy efficient routing protocol entitled “Position Responsive Routing Protocol” (PRRP). PRRP is designed to minimize energy consumed in each node by (1) reducing the amount of time in which a sensor node is in an idle listening state and (2) reducing the average communication distance over the network. The performance of the proposed PRRP was critically evaluated in the context of network lifetime, throughput, and energy consumption of the network per individual basis and per data packet basis. The research results were analyzed and benchmarked against the well-known LEACH and CELRP protocols. The outcomes show a significant improvement in the WSN in terms of energy efficiency and the overall performance of WSN.


Wireless Sensor Network (WSN) is a huge collection of sensor nodes deployed without any predetermined infrastructure. They are powered by batteries and energy consumption is one of the major issues in WSN. Hence to prolong the lifetime of the networks, it is important to design the energy efficient optimized routing algorithm. In this paper, two hop forwarding scheme in AODV and Fuzzy Logic is proposed to find an optimal routing protocol and intermediate node acknowledgement is deducted by the use of Fuzzy rules. The parameters such as remaining energy, data packet transmission, packet received acknowledgement and number of rounds is given as input to the fuzzy system which gives an optimized routing decision. The efficacy of the proposed algorithm is evaluated using NS2 and compared with Fuzzy-based Energy-Aware Routing Mechanism (FEARM). The simulation results shows that the Fuzzy based AODV routing algorithm reduces the energy consumption, minimizes the routing response packets and improves the network life time compared to other similar routing protocols.


Sign in / Sign up

Export Citation Format

Share Document