scholarly journals A Novel Clustering Approach in Wireless Sensor Network Using Genetic Algorithm and Fuzzy Logic

2019 ◽  
Vol 1 (2) ◽  
Author(s):  
Fatemehzahra Gholami Tirkolaei ◽  
Faramarz E. Seraji

<p>Wireless sensor network consists of hundred or thousand sensor nodes that are connected together and work simultaneously to perform some special tasks. The restricted energy of sensor nodes is the main challenge in wireless sensor network as node energy depletion causes node death. Therefore, some techniques should be exerted to reduce energy consumption in these networks. One of the techniques to reduce energy consumptions most effectively is the use of clustering in wireless sensor networks.</p><p>There are various methods for clustering process, among which LEACH is the most common and popular one. In this method, clusters are formed in a probabilistic manner. Among clustering strategies, applying evolutional algorithm and fuzzy logic simultaneously are rarely taken into account. The main attention of previous works was energy consumption and less attention was paid to delay.</p><p>In the present proposed method, clusters are constructed by an evolutional algorithm and a fuzzy system such that in addition to a reduction of energy consumption, considerable reduction of delay is also obtained. The simulation results clearly reveal the superiority of the proposed method over other reported approaches.</p>

2013 ◽  
Vol 705 ◽  
pp. 352-358
Author(s):  
Chun Xiao Fan ◽  
Ran Li ◽  
Jun Wei Zou ◽  
Ye Qiao Wang

This paper introduces an application of wireless sensor network based on the ZigBee -- the Smart-Scene system. In-depth analysis of factors of invalid power consumption, a functional separated sink node is designed and a DPM (Dynamic Power Management) schema of dynamic node based on event-driven is proposed. The schema is used in Smart-Scene system and the experimental results indicate it is high feasibility and reduce energy consumption. This method will become an effective solution for wireless sensor network.


Wireless Sensor Network (WSN) is a huge collection of sensor nodes deployed without any predetermined infrastructure. They are powered by batteries and energy consumption is one of the major issues in WSN. Hence to prolong the lifetime of the networks, it is important to design the energy efficient optimized routing algorithm. In this paper, two hop forwarding scheme in AODV and Fuzzy Logic is proposed to find an optimal routing protocol and intermediate node acknowledgement is deducted by the use of Fuzzy rules. The parameters such as remaining energy, data packet transmission, packet received acknowledgement and number of rounds is given as input to the fuzzy system which gives an optimized routing decision. The efficacy of the proposed algorithm is evaluated using NS2 and compared with Fuzzy-based Energy-Aware Routing Mechanism (FEARM). The simulation results shows that the Fuzzy based AODV routing algorithm reduces the energy consumption, minimizes the routing response packets and improves the network life time compared to other similar routing protocols.


2020 ◽  
Vol 12 (1) ◽  
pp. 205-224
Author(s):  
Anshu Kumar Dwivedi DUBEY

Purpose ”“ In the recent scenario, there are various issues related to wireless sensor networks such as clustering, routing, packet loss, network strength. The core functionality of primarily wireless sensor networks is sensor nodes that are randomly scattered over a specific area. The sensor senses the data and sends it to the base station. Energy consumption is an important issue in wireless sensor networks. Clustering and cluster head selection is an important method used to extend the lifetime of wireless sensor networks. The main goal of this research article is to reduce energy consumption using a clustering process such as CH determination, cluster formation, and data dissemination.   Methodology/approach/design ”“ The simulation in this paper was finished utilizing MATLAB programming methodology and the proposed technique is contrasted with the LEACH and MOD-LEACH protocols.   Findings ”“ The simulation results of this research show that the energy consumption and dead node ratio are improved of wireless sensor networks as compared to the LEACH and MOD-LEACH algorithms.   Originality/value ”“ In the wireless sensor network there are various constraints energy is one of them. In order to solve this problem use CH selection algorithms to reduce energy consumption and consequently increase network lifetime.


2019 ◽  
Vol 8 (4) ◽  
pp. 4000-4005

Minimization of the energy consumption in Wireless Sensor Network (WSN) is one of the most important area which has been explored by researchers through different methods. The use of non-stationary mobile sink has undoubtedly decreased the energy consumption within the sensor nodes and hence the life time of the system. Applying the Fuzzy Logic could effectively optimize the selection of Cluster Head. In this paper, Fuzzy Logic has been implemented for Cluster Head selection along with a mobile sink. The energy remaining in the sensor node, distance between the sink and the node, and the node degree are considered as the fuzzy inference variables. The life time of the node has been compared with the LEACH and Fuzzy logic based Clustering Combined with Mobile Sink (FCCMS) with mobile sink.


2019 ◽  
Vol 29 (09) ◽  
pp. 2050141 ◽  
Author(s):  
Muhammed Enes Bayrakdar

In this paper, a monitoring technique based on the wireless sensor network is investigated. The sensor nodes used for monitoring are developed in a simulation environment. Accordingly, the structure and workflow of wireless sensor network nodes are designed. Time-division multiple access (TDMA) protocol has been chosen as the medium access technique to ensure that the designed technique operates in an energy-efficient manner and packet collisions are not experienced. Fading channels, i.e., no interference, Ricean and Rayleigh, are taken into consideration. Energy consumption is decreased with the help of ad-hoc communication of sensor nodes. Throughput performance for different wireless fading channels and energy consumption are evaluated. The simulation results show that the sensor network can quickly collect medium information and transmit data to the processing center in real time. Besides, the proposed technique suggests the usefulness of wireless sensor networks in the terrestrial areas.


2022 ◽  
Vol 2161 (1) ◽  
pp. 012075
Author(s):  
Aditya Sai Kilaru ◽  
Prem Madishetty ◽  
Harsha Vardhan Naidu Yamala ◽  
C V Giriraja

Abstract The paper showcases the system used for automating agriculture using wireless sensor network (WSN) and weather prediction. WSN, is more efficient than IoT as it avoids connecting all the sensor nodes directly to Internet, thus reducing the traffic over Internet and energy consumption of the sensor network. The system consists of a clustered tree topology to increase the range of operation, connectivity and easily connect new nodes dynamically. The sensor nodes being the leaves, local gateways being the branches and the global gateway being the root node. The system is implemented using cost effective micro-controllers, robust communication modules and reliable data showcasing platforms. Our implementation uses weather prediction to minimize the water needed for irrigation. Thereby minimizing cost and increasing efficient usage of resources.


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Gulzar Mehmood ◽  
Muhammad Sohail Khan ◽  
Abdul Waheed ◽  
Mahdi Zareei ◽  
Muhammad Fayaz ◽  
...  

Wireless Sensor Network (WSN) is a particular network built from small sensor nodes. These sensor nodes have unique features. That is, it can sense and process data in WSN. WSN has tremendous applications in many fields. Despite the significance of WSN, this kind of network faced several issues. The biggest problems rising in WSN are energy consumption and security. Robust security development is needed to cope with WSN applications. For security purposes in WSN, cryptography techniques are very favorable. However, WSN has resource limitations, which is the main problem in applying any security scheme. Hence, if we are using the cryptography scheme in WSN, we must first guarantee that it must be energy-efficient. Thus, we proposed a secure hybrid session key management scheme for WSN. In this scheme, the major steps of public key cryptography are minimized, and much of the operations are based on symmetric key cryptography. This strategy extensively reduces the energy consumption of WSN and ensures optimum security. The proposed scheme is implemented, and their analysis is performed using different parameters with benchmark schemes. We concluded that the proposed scheme is energy-efficient and outperforms the available benchmark schemes. Furthermore, it provides an effective platform for secure key agreements and management in the WSN environment.


Author(s):  
Ashim Pokharel ◽  
Ethiopia Nigussie

Due to limited energy resources, different design strategies have been proposed in order to achieve better energy efficiency in wireless sensor networks, and organizing sensor nodes into clusters and data aggregation are among such solutions. In this work, secure communication protocol is added to clustered wireless sensor network. Security is a very important requirement that keeps the overall system usable and reliable by protecting the information in the network from attackers. The proposed and implemented AES block cipher provides confidentiality to the communication between nodes and base station. The energy efficiency of LEACH clustered network and with added security is analyzed in detail. In LEACH clustering along with the implemented data aggregation technique 48% energy has been saved compared to not clustered and no aggregation network. The energy consumption overhead of the AES-based security is 9.14%. The implementation is done in Contiki and the simulation is carried out in Cooja emulator using sky motes.


Wireless sensor network is the network of sensor nodes. The nodes transmit data to the sink node. Each sensor nodes have its own battery and ability to communicate with sink node. Network of such nodes is called sensor network. The successful operation of WSN largely depends on MAC sublayer which deals with addressing and channel access control. WSN has varied design constraints such as energy consumption, scalability, delay, traffic control, packet delivery throughput and overheads that need an effective MAC protocol to deal with these problems. Energy must be utilized efficiently in order to increase the lifetime of the Wireless Sensor Network. MAC protocols reduce the cost of energy consumption by providing an efficient communication for transmission and hence improves network lifetime. This paper shows the implementation of FMAC Protocol in healthcare system for different reporting rates. The purpose of the study is to identify the best MAC protocol in Healthcare System. Results for implementation of Hybrid MAC for hospital network are presented in the paper. Results for Data transmission between nodes and sink node has been evaluated to identify Good MAC protocol. Paper represents how low energy consumption can be achieved by combining TDMA and CSMA MAC protocols.


Sign in / Sign up

Export Citation Format

Share Document