scholarly journals GUV-Net for high fidelity shoeprint generation

Author(s):  
Muhammad Hassan ◽  
Yan Wang ◽  
Wei Pang ◽  
Di Wang ◽  
Daixi Li ◽  
...  

AbstractShoeprints contain valuable information for tracing evidence in forensic scenes, and they need to be generated into cleaned, sharp, and high-fidelity images. Most of the acquired shoeprints are found with low quality and/or in distorted forms. The high-fidelity shoeprint generation is of great significance in forensic science. A wide range of deep learning models has been suggested for super-resolution, being either generalized approaches or application specific. Considering the crucial challenges in shoeprint based processing and lacking specific algorithms, we proposed a deep learning based GUV-Net model for high-fidelity shoeprint generation. GUV-Net imitates learning features from VAE, U-Net, and GAN network models with special treatment of absent ground truth shoeprints. GUV-Net encodes efficient probabilistic distributions in the latent space and decodes variants of samples together with passed key features. GUV-Net forwards the learned samples to a refinement-unit proceeded to the generation of high-fidelity output. The refinement-unit receives low-level features from the decoding module at distinct levels. Furthermore, the refinement process is made more efficient by inverse-encoded in high dimensional space through a parallel inverse encoding network. The objective functions at different levels enable the model to efficiently optimize the parameters by mapping a low quality image to a high-fidelity one by maintaining salient features which are important to forensics. Finally, the performance of the proposed model is evaluated against state-of-the-art super-resolution network models.

2020 ◽  
Vol 12 (18) ◽  
pp. 2985 ◽  
Author(s):  
Yeneng Lin ◽  
Dongyun Xu ◽  
Nan Wang ◽  
Zhou Shi ◽  
Qiuxiao Chen

Automatic road extraction from very-high-resolution remote sensing images has become a popular topic in a wide range of fields. Convolutional neural networks are often used for this purpose. However, many network models do not achieve satisfactory extraction results because of the elongated nature and varying sizes of roads in images. To improve the accuracy of road extraction, this paper proposes a deep learning model based on the structure of Deeplab v3. It incorporates squeeze-and-excitation (SE) module to apply weights to different feature channels, and performs multi-scale upsampling to preserve and fuse shallow and deep information. To solve the problems associated with unbalanced road samples in images, different loss functions and backbone network modules are tested in the model’s training process. Compared with cross entropy, dice loss can improve the performance of the model during training and prediction. The SE module is superior to ResNext and ResNet in improving the integrity of the extracted roads. Experimental results obtained using the Massachusetts Roads Dataset show that the proposed model (Nested SE-Deeplab) improves F1-Score by 2.4% and Intersection over Union by 2.0% compared with FC-DenseNet. The proposed model also achieves better segmentation accuracy in road extraction compared with other mainstream deep-learning models including Deeplab v3, SegNet, and UNet.


Author(s):  
Alireza Vafaei Sadr ◽  
Bruce A. Bassett ◽  
M. Kunz

AbstractAnomaly detection is challenging, especially for large datasets in high dimensions. Here, we explore a general anomaly detection framework based on dimensionality reduction and unsupervised clustering. DRAMA is released as a general python package that implements the general framework with a wide range of built-in options. This approach identifies the primary prototypes in the data with anomalies detected by their large distances from the prototypes, either in the latent space or in the original, high-dimensional space. DRAMA is tested on a wide variety of simulated and real datasets, in up to 3000 dimensions, and is found to be robust and highly competitive with commonly used anomaly detection algorithms, especially in high dimensions. The flexibility of the DRAMA framework allows for significant optimization once some examples of anomalies are available, making it ideal for online anomaly detection, active learning, and highly unbalanced datasets. Besides, DRAMA naturally provides clustering of outliers for subsequent analysis.


2021 ◽  
Author(s):  
Yusi Chen ◽  
Burke Q Rosen ◽  
Terrence J Sejnowski

Investigating causal neural interactions are essential to understanding sub- sequent behaviors. Many statistical methods have been used for analyzing neural activity, but efficiently and correctly estimating the direction of net- work interactions remains difficult. Here, we derive dynamical differential covariance (DDC), a new method based on dynamical network models that detects directional interactions with low bias and high noise tolerance with- out the stationary assumption. The method is first validated on networks with false positive motifs and multiscale neural simulations where the ground truth connectivity is known. Then, applying DDC to recordings of resting-state functional magnetic resonance imaging (rs-fMRI) from over 1,000 individual subjects, DDC consistently detected regional interactions with strong structural connectivity. DDC can be generalized to a wide range of dynamical models and recording techniques.


2021 ◽  
Vol 263 (2) ◽  
pp. 4441-4445
Author(s):  
Hyunsuk Huh ◽  
Seungchul Lee

Audio data acquired at industrial manufacturing sites often include unexpected background noise. Since the performance of data-driven models can be worse by background noise. Therefore, it is important to get rid of unwanted background noise. There are two main techniques for noise canceling in a traditional manner. One is Active Noise Canceling (ANC), which generates an inverted phase of the sound that we want to remove. The other is Passive Noise Canceling (PNC), which physically blocks the noise. However, these methods require large device size and expensive cost. Thus, we propose a deep learning-based noise canceling method. This technique was developed using audio imaging technique and deep learning segmentation network. However, the proposed model only needs the information on whether the audio contains noise or not. In other words, unlike the general segmentation technique, a pixel-wise ground truth segmentation map is not required for this method. We demonstrate to evaluate the separation using pump sound of MIMII dataset, which is open-source dataset.


2020 ◽  
Vol 2 (2) ◽  
Author(s):  
Liang Chen ◽  
Weinan Wang ◽  
Yuyao Zhai ◽  
Minghua Deng

Abstract Single-cell RNA sequencing (scRNA-seq) allows researchers to study cell heterogeneity at the cellular level. A crucial step in analyzing scRNA-seq data is to cluster cells into subpopulations to facilitate subsequent downstream analysis. However, frequent dropout events and increasing size of scRNA-seq data make clustering such high-dimensional, sparse and massive transcriptional expression profiles challenging. Although some existing deep learning-based clustering algorithms for single cells combine dimensionality reduction with clustering, they either ignore the distance and affinity constraints between similar cells or make some additional latent space assumptions like mixture Gaussian distribution, failing to learn cluster-friendly low-dimensional space. Therefore, in this paper, we combine the deep learning technique with the use of a denoising autoencoder to characterize scRNA-seq data while propose a soft self-training K-means algorithm to cluster the cell population in the learned latent space. The self-training procedure can effectively aggregate the similar cells and pursue more cluster-friendly latent space. Our method, called ‘scziDesk’, alternately performs data compression, data reconstruction and soft clustering iteratively, and the results exhibit excellent compatibility and robustness in both simulated and real data. Moreover, our proposed method has perfect scalability in line with cell size on large-scale datasets.


Author(s):  
Weiwei Cai ◽  
Zhanguo Wei

The latest methods based on deep learning have achieved amazing results regarding the complex work of inpainting large missing areas in an image. This type of method generally attempts to generate one single "optimal" inpainting result, ignoring many other plausible results. However, considering the uncertainty of the inpainting task, one sole result can hardly be regarded as a desired regeneration of the missing area. In view of this weakness, which is related to the design of the previous algorithms, we propose a novel deep generative model equipped with a brand new style extractor which can extract the style noise (a latent vector) from the ground truth image. Once obtained, the extracted style noise and the ground truth image are both input into the generator. We also craft a consistency loss that guides the generated image to approximate the ground truth. Meanwhile, the same extractor captures the style noise from the generated image, which is forced to approach the input noise according to the consistency loss. After iterations, our generator is able to learn the styles corresponding to multiple sets of noise. The proposed model can generate a (sufficiently large) number of inpainting results consistent with the context semantics of the image. Moreover, we check the effectiveness of our model on three databases, i.e., CelebA, Agricultural Disease, and MauFlex. Compared to state-of-the-art inpainting methods, this model is able to offer desirable inpainting results with both a better quality and higher diversity. The code and model will be made available on https://github.com/vivitsai/SEGAN.


2021 ◽  
Author(s):  
Evan Seitz ◽  
Peter Schwander ◽  
Francisco J. Acosta-Reyes ◽  
Suvrajit Maji ◽  
Joachim Frank

This work is based on the manifold-embedding approach to the study of biological molecules exhibiting conformational changes in a continuum. Previous studies established a workflow capable of reconstructing atomic-level structures in the conformational continuum from cryo-EM images so as to reveal the latent space of macromolecules undergoing multiple degrees of freedom. Here, we introduce a new approach that is informed by detailed heuristic analysis of manifolds formed by simulated heterogeneous cryo-EM datasets. These simulated models were generated with increasing complexity to account for multiple motions, state occupancies and CTF in a wide range of signal-to-noise ratios. Using these datasets as ground-truth, we provide detailed exposition of our findings using several conformational motions while exploring the available parameter space. Guided by these insights, we build a framework to leverage the high-dimensional geometric information obtained towards reconstituting the quasi-continuum of conformational states in the form of an energy landscape and respective 3D maps for all states therein. This framework offers substantial enhancements relative to previous work, for which a direct comparison of outputs has been provided.


2021 ◽  
Vol 38 (5) ◽  
pp. 1361-1368
Author(s):  
Fatih M. Senalp ◽  
Murat Ceylan

The thermal camera systems can be used in all kinds of applications that require the detection of heat change, but thermal imaging systems are highly costly systems. In recent years, developments in the field of deep learning have increased the success by obtaining quality results compared to traditional methods. In this paper, thermal images of neonates (healthy - unhealthy) obtained from a high-resolution thermal camera were used and these images were evaluated as high resolution (ground truth) images. Later, these thermal images were downscaled at 1/2, 1/4, 1/8 ratios, and three different datasets consisting of low-resolution images in different sizes were obtained. In this way, super-resolution applications have been carried out on the deep network model developed based on generative adversarial networks (GAN) by using three different datasets. The successful performance of the results was evaluated with PSNR (peak signal to noise ratio) and SSIM (structural similarity index measure). In addition, healthy - unhealthy classification application was carried out by means of a classifier network developed based on convolutional neural networks (CNN) to evaluate the super-resolution images obtained using different datasets. The obtained results show the importance of combining medical thermal imaging with super-resolution methods.


2021 ◽  
Author(s):  
Jiaoyue Li ◽  
Weifeng Liu ◽  
Kai Zhang ◽  
Baodi Liu

Remote sensing image super-resolution (SR) plays an essential role in many remote sensing applications. Recently, remote sensing image super-resolution methods based on deep learning have shown remarkable performance. However, directly utilizing the deep learning methods becomes helpless to recover the remote sensing images with a large number of complex objectives or scene. So we propose an edge-based dense connection generative adversarial network (SREDGAN), which minimizes the edge differences between the generated image and its corresponding ground truth. Experimental results on NWPU-VHR-10 and UCAS-AOD datasets demonstrate that our method improves 1.92 and 0.045 in PSNR and SSIM compared with SRGAN, respectively.


Sign in / Sign up

Export Citation Format

Share Document