Model specification and data interpretation of climate in Pakistan

Author(s):  
Gulshan Ara Majid ◽  
Ahmad Saeed Akhter
Author(s):  
H.A. Cohen ◽  
T.W. Jeng ◽  
W. Chiu

This tutorial will discuss the methodology of low dose electron diffraction and imaging of crystalline biological objects, the problems of data interpretation for two-dimensional projected density maps of glucose embedded protein crystals, the factors to be considered in combining tilt data from three-dimensional crystals, and finally, the prospects of achieving a high resolution three-dimensional density map of a biological crystal. This methodology will be illustrated using two proteins under investigation in our laboratory, the T4 DNA helix destabilizing protein gp32*I and the crotoxin complex crystal.


Methodology ◽  
2014 ◽  
Vol 10 (4) ◽  
pp. 138-152 ◽  
Author(s):  
Hsien-Yuan Hsu ◽  
Susan Troncoso Skidmore ◽  
Yan Li ◽  
Bruce Thompson

The purpose of the present paper was to evaluate the effect of constraining near-zero parameter cross-loadings to zero in the measurement component of a structural equation model. A Monte Carlo 3 × 5 × 2 simulation design was conducted (i.e., sample sizes of 200, 600, and 1,000; parameter cross-loadings of 0.07, 0.10, 0.13, 0.16, and 0.19 misspecified to be zero; and parameter path coefficients in the structural model of either 0.50 or 0.70). Results indicated that factor pattern coefficients and factor covariances were overestimated in measurement models when near-zero parameter cross-loadings constrained to zero were higher than 0.13 in the population. Moreover, the path coefficients between factors were misestimated when the near-zero parameter cross-loadings constrained to zero were noteworthy. Our results add to the literature detailing the importance of testing individual model specification decisions, and not simply evaluating omnibus model fit statistics.


Marketing ZFP ◽  
2019 ◽  
Vol 41 (4) ◽  
pp. 33-42
Author(s):  
Thomas Otter

Empirical research in marketing often is, at least in parts, exploratory. The goal of exploratory research, by definition, extends beyond the empirical calibration of parameters in well established models and includes the empirical assessment of different model specifications. In this context researchers often rely on the statistical information about parameters in a given model to learn about likely model structures. An example is the search for the 'true' set of covariates in a regression model based on confidence intervals of regression coefficients. The purpose of this paper is to illustrate and compare different measures of statistical information about model parameters in the context of a generalized linear model: classical confidence intervals, bootstrapped confidence intervals, and Bayesian posterior credible intervals from a model that adapts its dimensionality as a function of the information in the data. I find that inference from the adaptive Bayesian model dominates that based on classical and bootstrapped intervals in a given model.


2019 ◽  
Vol 72 (0) ◽  
pp. 68-77
Author(s):  
Shinichiro Iso ◽  
Kazuya Ishitsuka ◽  
Kyosuke Onishi ◽  
Toshifumi Matsuoka

Sign in / Sign up

Export Citation Format

Share Document