Laguerre Wavelets Exact Parseval Frame-based Numerical Method for the Solution of System of Differential Equations

Author(s):  
S. C. Shiralashetti ◽  
S. Kumbinarasaiah
2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
Hua Dong ◽  
Xianghua Zhao

This paper considers a perturbed Markov-modulated risk model with two-sided jumps, where both the upward and downward jumps follow arbitrary distribution. We first derive a system of differential equations for the Gerber-Shiu function. Furthermore, a numerical result is given based on Chebyshev polynomial approximation. Finally, an example is provided to illustrate the method.


Author(s):  
Mircea Bogdan Tătaru ◽  
Vladimir Dragoş Tătaru

AbstractThe paper presents a numerical method of kinematical analysis of the articulated quadrilateral mechanism. Starting from Euler’s relation concerning the distribution of speeds written in projections on the fixed reference system axes, a system of differential equations describing the movement of the mechanism was obtained. This system of differential equations was then solved using numerical integration methods and the variation with respect to time of the position kinematical parameters, of the velocities (the first order kinematical parameters), and of the accelerations (the second order kinematical parameters), was obtained. Matrix writing of the differential equations was used in order to make the differential equations set out in the paper easier to solve using the electronic computer.


2012 ◽  
Vol 9 (1) ◽  
pp. 26-31
Author(s):  
N.A. Asylbaev ◽  
I.K. Gimaltdinov

The formulation and results of the numerical solution of the problem of the spread of steppe fire in two-dimensional case on an inclined underlying surface. System of differential equations in partial derivatives with the corresponding initial and boundary conditions is reduced to a discrete form using the check volume method. Grid equations arising in the process of discretization, are solved using a numerical method.


2011 ◽  
Vol 60 (2) ◽  
pp. 137-148
Author(s):  
Igor Korotyeyev ◽  
Beata Zięba

Steady-state modelling method for matrix-reactance frequency converter with boost topologyThis paper presents a method intended for calculation of steady-state processes in AC/AC three-phase converters that are described by nonstationary periodical differential equations. The method is based on the extension of nonstationary differential equations and the use of Galerkin's method. The results of calculations are presented in the form of a double Fourier series. As an example, a three-phase matrix-reactance frequency converter (MRFC) with boost topology is considered and the results of computation are compared with a numerical method.


1998 ◽  
Vol 11 (1) ◽  
pp. 381-381
Author(s):  
A.V. Dorodnitsyn

We have considered a stationary outflowing envelope accelerated by the radiative force in arbitrary optical depth case. Introduced approximations provide satisfactory description of the behavior of the matter flux with partially separated radiation at arbitrary optical depths. The obtained systemof differential equations provides a continuous transition of the solution between optically thin and optically thick regions. We analytically derivedapproximate representation of the solution at the vicinity of the sonic point. Using this representation we numerically integrate the system of equations from the critical point to the infinity. Matching the boundary conditions we obtain solutions describing the problem system of differential equations. The theoretical approach advanced in this work could be useful for self-consistent simulations of massive star evolution with mass loss.


Symmetry ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 501
Author(s):  
Ahmed Boudaoui ◽  
Khadidja Mebarki ◽  
Wasfi Shatanawi ◽  
Kamaleldin Abodayeh

In this article, we employ the notion of coupled fixed points on a complete b-metric space endowed with a graph to give sufficient conditions to guarantee a solution of system of differential equations with impulse effects. We derive recisely some new coupled fixed point theorems under some conditions and then apply our results to achieve our goal.


Sign in / Sign up

Export Citation Format

Share Document