A Numerical Method for Fractional Pantograph Delay Integro-Differential Equations on Haar Wavelet

Author(s):  
Israr Ahmad ◽  
Rohul Amin ◽  
Thabet Abdeljawad ◽  
Kamal Shah
2018 ◽  
Vol 15 (06) ◽  
pp. 1850047 ◽  
Author(s):  
Imran Aziz ◽  
Imran Khan

In this paper, a collocation method based on Haar wavelet is developed for numerical solution of diffusion and reaction–diffusion partial integro-differential equations. The equations are parabolic partial integro-differential equations and we consider both one-dimensional and two-dimensional cases. Such equations have applications in several practical problems including population dynamics. An important advantage of the proposed method is that it can be applied to both linear as well as nonlinear problems with slide modification. The proposed numerical method is validated by applying it to various benchmark problems from the existing literature. The numerical results confirm the accuracy, efficiency and robustness of the proposed method.


2011 ◽  
Vol 60 (2) ◽  
pp. 137-148
Author(s):  
Igor Korotyeyev ◽  
Beata Zięba

Steady-state modelling method for matrix-reactance frequency converter with boost topologyThis paper presents a method intended for calculation of steady-state processes in AC/AC three-phase converters that are described by nonstationary periodical differential equations. The method is based on the extension of nonstationary differential equations and the use of Galerkin's method. The results of calculations are presented in the form of a double Fourier series. As an example, a three-phase matrix-reactance frequency converter (MRFC) with boost topology is considered and the results of computation are compared with a numerical method.


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Mujeeb ur Rehman ◽  
Dumitru Baleanu ◽  
Jehad Alzabut ◽  
Muhammad Ismail ◽  
Umer Saeed

Abstract The objective of this paper is to present two numerical techniques for solving generalized fractional differential equations. We develop Haar wavelets operational matrices to approximate the solution of generalized Caputo–Katugampola fractional differential equations. Moreover, we introduce Green–Haar approach for a family of generalized fractional boundary value problems and compare the method with the classical Haar wavelets technique. In the context of error analysis, an upper bound for error is established to show the convergence of the method. Results of numerical experiments have been documented in a tabular and graphical format to elaborate the accuracy and efficiency of addressed methods. Further, we conclude that accuracy-wise Green–Haar approach is better than the conventional Haar wavelets approach as it takes less computational time compared to the Haar wavelet method.


SIMULATION ◽  
2021 ◽  
pp. 003754972110216
Author(s):  
Zhang Lei ◽  
Li Jie ◽  
Wang Menglu ◽  
Liu Mengya

Simulating a physical system in real-time is widely used in equipment design, test, and validation. Though an implicit multistep numerical method excels at solving physical models that are usually composed of stiff ordinary differential equations, it is not suitable for real-time simulation because of state discontinuity and massive iterations for root finding. Thus, a method based on the backward differential formula is presented. It divides the main fixed step of real-time simulation into limited minor steps according to computing cost and accuracy demand. By analyzing and testing its capability, this method shows advantage and efficiency in real-time simulation, especially when the system contains stiff equations. A simulation application will have more flexibility while using this method.


1972 ◽  
Vol 39 (3) ◽  
pp. 689-695 ◽  
Author(s):  
W. W. Recker

The two-dimensional equations of magnetoelastodynamics are considered as a symmetric hyperbolic system of linear first-order partial-differential equations in three independent variables. The characteristic properties of the system are determined and a numerical method for obtaining the solution to mixed initial and boundary-value problems in plane magnetoelastodynamics is presented. Results on the von Neumann necessary condition are presented. Application of the method to a problem which has a known solution provides further numerical evidence of the convergence and stability of the method.


Sign in / Sign up

Export Citation Format

Share Document