scholarly journals Tetracycline antibiotics

ChemTexts ◽  
2021 ◽  
Vol 7 (3) ◽  
Author(s):  
Raghavendra Ramachanderan ◽  
Bernd Schaefer

AbstractTetracyclines belong to the first broad-spectrum, well-tolerated, and easy-to-administer antibiotics, which are effective against plague, cholera, typhoid, syphilis, Legionnaire’s disease, and anthrax. Some can also be used to treat malaria, Lyme disease, tuberculosis, Rocky Mountain spotted fever, and leprosy. Humans first encountered these chemical species involuntarily in ancient times, as evidenced from the analysis of bone samples dating back more than 1500 years. Shortly after World War II, they were “rediscovered” at Lederle Laboratories and Pfizer as a result of an intense search for new antibiotics. Their bacteriostatic action is based on the inhibition of protein biosynthesis. Since the structure elucidation by Robert Woodward, Lloyd Hillyard Conover, and others in the 1950s, tetracyclines have become preferred targets for natural product synthesis. However, on industrial scale, they became readily available by fermentation and partial synthesis. Their casual and thoughtless use in the initial decades after launch not only in humans but for veterinary purposes and as growth-enhancement agents in meat production rapidly led to the emergence of resistance. In an arms race for new antibiotics, more and more new drugs have been developed to deal with the threat. In this ongoing endeavor, a remarkable milestone was set by Andrew Myers in 2005 with the convergent total synthesis of (−)-doxycycline, as well as numerous azatetracyclines and pentacyclines, which has inspired chemists in the pharmaceutical industry to discover novel and highly active tetracyclines in recent years. Graphic abstract

Praxis ◽  
2005 ◽  
Vol 94 (47) ◽  
pp. 1869-1870
Author(s):  
Balestra ◽  
Nüesch

Eine 37-jährige Patientin stellt sich nach der Rückkehr von einer Rundreise durch Nordamerika mit einem Status febrilis seit zehn Tagen und einem makulösem extremitätenbetontem Exanthem seit einem Tag vor. Bei suggestiver Klinik und Besuch der Rocky Mountains wird ein Rocky Mountain spotted fever diagnostiziert. Die Serologie für Rickettsia conorii, die mit Rickettsia rickettsii kreuzreagiert, war positiv und bestätigte die klinische Diagnose. Allerdings konnte der beweisende vierfache Titeranstieg, möglicherweise wegen spät abgenommener ersten Serologie, nicht nachgewiesen werden. Nach zweiwöchiger antibiotischer Therapie mit Doxycycline waren Status febrilis und Exanthem regredient.


2019 ◽  
Vol 19 (3) ◽  
pp. 238-257
Author(s):  
Suresh Antony

Background:In the United States, tick-borne illnesses account for a significant number of patients that have been seen and treated by health care facilities. This in turn, has resulted in a significant morbidity and mortality and economic costs to the country.Methods:The distribution of these illnesses is geographically variable and is related to the climate as well. Many of these illnesses can be diagnosed and treated successfully, if recognized and started on appropriate antimicrobial therapy early in the disease process. Patient with illnesses such as Lyme disease, Wet Nile illness can result in chronic debilitating diseases if not recognized early and treated.Conclusion:This paper covers illnesses such as Lyme disease, West Nile illness, Rocky Mountain Spotted fever, Ehrlichia, Tularemia, typhus, mosquito borne illnesses such as enteroviruses, arboviruses as well as arthropod and rodent borne virus infections as well. It covers the epidemiology, clinical features and diagnostic tools needed to make the diagnosis and treat these patients as well.


2020 ◽  
Vol 15 (06) ◽  
pp. 269-275
Author(s):  
Kaila Lessner ◽  
Conrad Krawiec

AbstractWhen unrecognized and antibiotic delay occurs, Lyme disease, Rocky Mountain–spotted fever, babesiosis, and human ehrlichiosis and anaplasmosis can result in multiorgan system dysfunction and potentially death. This review focuses on the early recognition, evaluation, and stabilization of the rare life-threatening sequelae seen in tick-borne illnesses that require admission in the pediatric intensive care unit.


Author(s):  
Kathryn T Duncan ◽  
Meriam N Saleh ◽  
Kellee D Sundstrom ◽  
Susan E Little

Abstract Throughout North America, Dermacentor spp. ticks are often found feeding on animals and humans, and are known to transmit pathogens, including the Rocky Mountain spotted fever agent. To better define the identity and distribution of Dermacentor spp. removed from dogs and cats in the United States, ticks submitted from 1,457 dogs (n = 2,924 ticks) and 137 cats (n = 209 ticks) from veterinary practices in 44/50 states from February 2018-January 2020 were identified morphologically (n = 3,133); the identity of ticks from regions where Dermacentor andersoni (Stiles) have been reported, and a subset of ticks from other regions, were confirmed molecularly through amplification and sequencing of the ITS2 region and a 16S rRNA gene fragment. Of the ticks submitted, 99.3% (3,112/3,133) were Dermacentor variabilis (Say), 0.4% (12/3,133) were D. andersoni, and 0.3% (9/3,133) were Dermacentor albipictus (Packard). While translocation of pets prior to tick removal cannot be discounted, the majority (106/122; 87%) of Dermacentor spp. ticks removed from dogs and cats in six Rocky Mountain states (Montana, Idaho, Wyoming, Nevada, Utah, and Colorado) were D. variabilis, suggesting this species may be more widespread in the western United States than is currently recognized, or that D. andersoni, if still common in the region, preferentially feeds on hosts other than dogs and cats. Together, these data support the interpretation that D. variabilis is the predominant Dermacentor species found on pets throughout the United States, a finding that may reflect recent shifts in tick distribution.


Pathogens ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 228
Author(s):  
M. Nathan Kristof ◽  
Paige E. Allen ◽  
Lane D. Yutzy ◽  
Brandon Thibodaux ◽  
Christopher D. Paddock ◽  
...  

Rickettsia are significant sources of tick-borne diseases in humans worldwide. In North America, two species in the spotted fever group of Rickettsia have been conclusively associated with disease of humans: Rickettsia rickettsii, the causative agent of Rocky Mountain spotted fever, and Rickettsia parkeri, the cause of R. parkeri rickettsiosis. Previous work in our lab demonstrated non-endothelial parasitism by another pathogenic SFG Rickettsia species, Rickettsia conorii, within THP-1-derived macrophages, and we have hypothesized that this growth characteristic may be an underappreciated aspect of rickettsial pathogenesis in mammalian hosts. In this work, we demonstrated that multiple other recognized human pathogenic species of Rickettsia, including R. rickettsii, R. parkeri, Rickettsia africae, and Rickettsiaakari can grow within target endothelial cells as well as within PMA-differentiated THP-1 cells. In contrast, Rickettsia bellii, a Rickettsia species not associated with disease of humans, and R. rickettsii strain Iowa, an avirulent derivative of pathogenic R. rickettsii, could invade both cell types but proliferate only within endothelial cells. Further analysis revealed that similar to previous studies on R. conorii, other recognized pathogenic Rickettsia species could grow within the cytosol of THP-1-derived macrophages and avoided localization with two different markers of lysosomal compartments; LAMP-2 and cathepsin D. R. bellii, on the other hand, demonstrated significant co-localization with lysosomal compartments. Collectively, these findings suggest that the ability of pathogenic rickettsial species to establish a niche within macrophage-like cells could be an important factor in their ability to cause disease in mammals. These findings also suggest that analysis of growth within mammalian phagocytic cells may be useful to predict the pathogenic potential of newly isolated and identified Rickettsia species.


Sign in / Sign up

Export Citation Format

Share Document