scholarly journals A strong Lewis acid imparts high ionic conductivity and interfacial stability to polymer composite electrolytes towards all-solid-state Li-metal batteries

Author(s):  
Litong Wang ◽  
Yunlei Zhong ◽  
Zhaorui Wen ◽  
Chaowei Li ◽  
Jingxin Zhao ◽  
...  
Nanoscale ◽  
2021 ◽  
Author(s):  
Feihu Tan ◽  
Hua An ◽  
Ning Li ◽  
Jun Du ◽  
Zhengchun Peng

As flexible all-solid-state batteries are highly safe and lightweight, they can be considered as candidates for wearable energy sources. However, their performance needs to be first improved, which can be...


Author(s):  
Diego Holanda Pereira de Souza ◽  
Kasper T. Møller ◽  
Stephen A. Moggach ◽  
Terry D Humphries ◽  
Anita D’Angelo ◽  
...  

Metal boron-hydrogen compounds are considered as promising solid electrolyte candidates for the development of all-solid-state batteries (ASSB), owing to the high ionic conductivity exhibited by closo- and nido-boranes. In this...


1988 ◽  
Vol 135 ◽  
Author(s):  
Werner Weppner

Solid State ion conductors are sucessfully employed in chemical sensors for gases such as oxygen for process control and environmental protection. The application requires elevated temperatures for sufficiently high ionic conductivity and is restricted to a few gases for which suitable solid electrolytes are available.


Ceramics ◽  
2021 ◽  
Vol 4 (3) ◽  
pp. 421-436
Author(s):  
Aamir Iqbal Waidha ◽  
Vanita Vanita ◽  
Oliver Clemens

Composite electrolytes containing lithium ion conducting polymer matrix and ceramic filler are promising solid-state electrolytes for all solid-state lithium ion batteries due to their wide electrochemical stability window, high lithium ion conductivity and low electrode/electrolyte interfacial resistance. In this study, we report on the polymer infiltration of porous thin films of aluminum-doped cubic garnet fabricated via a combination of nebulized spray pyrolysis and spin coating with subsequent post annealing at 1173 K. This method offers a simple and easy route for the fabrication of a three-dimensional porous garnet network with a thickness in the range of 50 to 100 µm, which could be used as the ceramic backbone providing a continuous pathway for lithium ion transport in composite electrolytes. The porous microstructure of the fabricated thin films is confirmed via scanning electron microscopy. Ionic conductivity of the pristine films is determined via electrochemical impedance spectroscopy. We show that annealing times have a significant impact on the ionic conductivity of the films. The subsequent polymer infiltration of the porous garnet films shows a maximum ionic conductivity of 5.3 × 10−7 S cm−1 at 298 K, which is six orders of magnitude higher than the pristine porous garnet film.


Author(s):  
Jung Yong Seo ◽  
Sunggeun Shim ◽  
Jin-Woong Lee ◽  
Byung Do Lee ◽  
Sangwon Park ◽  
...  

Na3PS4 is an archetypal room-temperature (RT), Na+-conducting, solid-state electrolyte. Various compositional modifications of this compound via iso/aliovalent substitution are known to provide a high ionic conductivity (ion) that is comparable...


Sign in / Sign up

Export Citation Format

Share Document