Ultimate Capacity of Battered Pile Groups Subjected to Oblique Pullout Loads in Sand

Author(s):  
Tanvi Singh ◽  
Mahesh Pal ◽  
V. K. Arora
1973 ◽  
Vol 10 (3) ◽  
pp. 428-438 ◽  
Author(s):  
G. G. Meyerhof ◽  
Gopal Ranjan

Following Part I on vertical piles and Part II on inclined piles the present Part III deals with the general principles for estimating ultimate capacity of a pile bent under inclined load. The results of loading tests on two model pile bents with depth/diameter ratios of 13 and 23 for free standing bents and 15 and 25 for piled bents are presented. Test results on free standing and piled bents are reported in compact and dense states of packing of sand. Bents with vertical and batter piles have been tested under inclinations of load varying from vertical to horizontal.The experimental results are discussed and conclusions regarding the behavior of free standing and piled bents under inclination of load, type of bent, and pile cap are drawn.


2006 ◽  
Vol 24 (2) ◽  
pp. 265-282 ◽  
Author(s):  
Nihar Ranjan Patra ◽  
Prabhakar Jagannath Pise
Keyword(s):  

Author(s):  
Milad Souri

The results of five centrifuge models were used to evaluate the response of pile-supported wharves subjected to inertial and liquefaction-induced lateral spreading loads. The centrifuge models contained pile groups that were embedded in rockfill dikes over layers of loose to dense sand and were shaken by a series of ground motions. The p-y curves were back-calculated for both dynamic and static loading from centrifuge data and were compared against commonly used American Petroleum Institute p-y relationships. It was found that liquefaction in loose sand resulted in a significant reduction in ultimate soil resistance. It was also found that incorporating p-multipliers that are proportional to the pore water pressure ratio in granular materials is adequate for estimating pile demands in pseudo-static analysis. The unique contribution of this study is that the piles in these tests were subjected to combined effects of inertial loads from the superstructure and kinematic loads from liquefaction-induced lateral spreading.


2020 ◽  
Vol 11 (1) ◽  
pp. 26
Author(s):  
Muhammad Bilal Adeel ◽  
Muhammad Asad Jan ◽  
Muhammad Aaqib ◽  
Duhee Park

The behavior of laterally loaded pile groups is usually accessed by beam-on-nonlinear-Winkler-foundation (BNWF) approach employing various forms of empirically derived p-y curves and p-multipliers. Averaged p-multiplier for a particular pile group is termed as the group effect parameter. In practice, the p-y curve presented by the American Petroleum Institute (API) is most often utilized for piles in granular soils, although its shortcomings are recognized. In this study, we performed 3D finite element analysis to develop p-multipliers and group effect parameters for 3 × 3 to 5 × 5 vertically squared pile groups. The effect of the ratio of spacing to pile diameter (S/D), number of group piles, varying friction angle (φ), and pile fixity conditions on p-multipliers and group effect parameters are evaluated and quantified. Based on the simulation outcomes, a new functional form to calculate p-multipliers is proposed for pile groups. Extensive comparisons with the experimental measurements reveal that the calculated p-multipliers and group effect parameters are within the recorded range. Comparisons with two design guidelines which do not account for the pile fixity condition demonstrate that they overestimate the p-multipliers for fixed-head condition.


Sign in / Sign up

Export Citation Format

Share Document