Strength Analysis of Reinforced Concrete Beams Affected by Fire Using Glass Fiber Sheet and PP Fiber ECC as Binders

Author(s):  
P. Bhuvaneshwari ◽  
K. Saravana Raja Mohan
2012 ◽  
Vol 204-208 ◽  
pp. 2887-2890
Author(s):  
Yan Han ◽  
Hong Bo Liu ◽  
Tao Guo

The stiffness of reinforced concrete simple beams strengthened with carbon fiber sheets is studied in this paper. The calculation formulas of it are discussed, for steel yielding and not yielding. The stiffness increases with the number of carbon fiber layer or reinforcement ratio increases.


2018 ◽  
Vol 7 (3.2) ◽  
pp. 299 ◽  
Author(s):  
Andriy Pavlikov ◽  
Marta Kosior-Kazberuk ◽  
Olha Harkava

The experimental tests data of reinforced concrete beams of a rectangular profile made of heavy concrete on pure biaxial bending are presented. The inclination angle of the external load plane to the vertical axis of inertia of the section varied in the range from 0º to 20º. The tests were conducted to study the work of the biaxial bended elements under load and to verify the developed method for strength analysis of such elements. It has been established that the order of changing the neutral axis position in the section of the biaxial bending beams in the loading process depends primarily on the relative disposition of the external load plane and the resultant in the tensioned reinforcement. It has been confirmed that the ultimate compressed fibrous strains of concrete depend not on the shape of the section, but on the shape of the concrete compressed zone. The results of the tests have good correspondence with theoretical calculations, which proves the expediency of using the developed engineering method for the strength analysis.  


2019 ◽  
Vol 9 (14) ◽  
pp. 2838 ◽  
Author(s):  
Sayed Mohamad Soleimani ◽  
Sajjad Sayyar Roudsari

During dynamic events (such as impact forces), structures fail to absorb the incoming energy and catastrophic collapse may occur. Impact and quasi-static tests were carried out on reinforced concrete beams with and without externally bounded sprayed and fabric glass fiber-reinforced polymers. For impact loading, a fully instrumented drop-weight impact machine with a capacity of 14.5 kJ was used. The drop height and loading rate were varied. The load-carrying capacity of reinforced concrete beams under impact loading was obtained using instrumented anvil supports (by summing the support reactions). In quasi-static loading conditions, the beams were tested in three-point loading using a Baldwin Universal Testing Machine. ABAQUS FEA software was used to model some of the tested reinforced concrete beams. It was shown that the stiffness of reinforced concrete beams decreases with increasing drop height. It was also shown that applying sprayed glass fiber-reinforced polymers (with and without mechanical stiffeners) and fabric glass fiber-reinforced polymers on the surface of reinforced concrete beams increased the stiffness. Results obtained from the software analyses were in good agreement with the laboratory test results.


2014 ◽  
Vol 936 ◽  
pp. 1438-1441
Author(s):  
Qing Yi Liu ◽  
Xiao Mei Liu

Three reinforcement materials with steel plate, epoxies resin sheet, and glass fiber sheet adhering to failed reinforced concrete beams (RC beams) were used to improve the bearing capacity of Reinforced Concrete beams in the paper. The test results shows all the three materials were proved satisfied with bearing capacity increasing request. Strengthening effects with steel plate and epoxies resin sheet were more obvious.


Sign in / Sign up

Export Citation Format

Share Document